04 ¼BTd_pAWd_pOO(0 1),(1 0),(0 -1),(-1 0),&-[[, * &[[, *&--[[, * &[[,- *O() 01 ,¡() 10 ,¡( -1) 0 ,(-1 ),¡ 0&Qw]_, *&],Qw*&],-Qw*&-w]Q_-, * &Qw]_-, *&-],-Qw*&-],Qw*&-Qw]_, *OQw
¼ 0Th_p _yp244 Trigonometric functions (Chapter 9)Reminder:Example 6 Self Tutor
Solve forx: 2 sinx¡1=0, 06 x 6 ¼2 sinx¡1=0
) sinx=^12
There are two points on the unit circle with sine^12.
They correspond to angles¼ 6 and^56 ¼.
These are the only solutions on the domain 06 x 6 ¼,so
x=¼ 6 or^56 ¼.Since the tangent function is periodic with period¼we see that tan(x+¼) = tanx for all values ofx.
This means that equaltanvalues are¼units apart.Example 7 Self Tutor
Solve tanx+p
3=0 for 0 <x< 4 ¼.tanx+p
3=0
) tanx=¡p
3
There are two points on the unit
circle with tangent¡p
3.
They correspond to angles^23 ¼ and^53 ¼.
For the domain 0 <x< 4 ¼ we have
4 solutions: x=^23 ¼,^53 ¼,^83 ¼,or^113 ¼.EXERCISE 9E.2
1 Solve forxon the domain 06 x 64 ¼:
a 2 cosx¡1=0 bp
2 sinx=1 c tanx=1
2 Solve forxon the domain ¡ 2 ¼ 6 x 62 ¼:
a 2 sinx¡p
3=0 bp
2 cosx+1=0 c tanx=¡ 1Start at angle and work
around to , noting down
the angle every time you
reach points A and B.0
4 ¼(moved over +100mm to the right!)cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\244CamAdd_09.cdr Tuesday, 28 January 2014 9:42:21 AM BRIAN