Cambridge Additional Mathematics

(singke) #1
04 ¼

BTd_p

AWd_p

OO

(0 1),

(1 0),

(0 -1),

(-1 0),

&-[[, * &[[, *

&--[[, * &[[,- *

O

() 01 ,¡

() 10 ,¡

( -1) 0 ,

(-1 ),¡ 0

&Qw]_, *

&],Qw*

&],-Qw*

&-w]Q_-, * &Qw]_-, *

&-],-Qw*

&-],Qw*

&-Qw]_, *

O

Qw
¼ 0

Th_p _yp

244 Trigonometric functions (Chapter 9)

Reminder:

Example 6 Self Tutor


Solve forx: 2 sinx¡1=0, 06 x 6 ¼

2 sinx¡1=0
) sinx=^12
There are two points on the unit circle with sine^12.
They correspond to angles¼ 6 and^56 ¼.
These are the only solutions on the domain 06 x 6 ¼,so
x=¼ 6 or^56 ¼.

Since the tangent function is periodic with period¼we see that tan(x+¼) = tanx for all values ofx.
This means that equaltanvalues are¼units apart.

Example 7 Self Tutor


Solve tanx+

p
3=0 for 0 <x< 4 ¼.

tanx+

p
3=0
) tanx=¡

p
3
There are two points on the unit
circle with tangent¡

p
3.
They correspond to angles^23 ¼ and^53 ¼.
For the domain 0 <x< 4 ¼ we have
4 solutions: x=^23 ¼,^53 ¼,^83 ¼,or^113 ¼.

EXERCISE 9E.2


1 Solve forxon the domain 06 x 64 ¼:
a 2 cosx¡1=0 b

p
2 sinx=1 c tanx=1
2 Solve forxon the domain ¡ 2 ¼ 6 x 62 ¼:
a 2 sinx¡

p
3=0 b

p
2 cosx+1=0 c tanx=¡ 1

Start at angle and work
around to , noting down
the angle every time you
reach points A and B.

0
4 ¼

(moved over +100mm to the right!)

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\244CamAdd_09.cdr Tuesday, 28 January 2014 9:42:21 AM BRIAN

Free download pdf