04 ¼
BTd_p
AWd_p
OO
(0 1),
(1 0),
(0 -1),
(-1 0),
&-[[, * &[[, *
&--[[, * &[[,- *
O
() 01 ,¡
() 10 ,¡
( -1) 0 ,
(-1 ),¡ 0
&Qw]_, *
&],Qw*
&],-Qw*
&-w]Q_-, * &Qw]_-, *
&-],-Qw*
&-],Qw*
&-Qw]_, *
O
Qw
¼ 0
Th_p _yp
244 Trigonometric functions (Chapter 9)
Reminder:
Example 6 Self Tutor
Solve forx: 2 sinx¡1=0, 06 x 6 ¼
2 sinx¡1=0
) sinx=^12
There are two points on the unit circle with sine^12.
They correspond to angles¼ 6 and^56 ¼.
These are the only solutions on the domain 06 x 6 ¼,so
x=¼ 6 or^56 ¼.
Since the tangent function is periodic with period¼we see that tan(x+¼) = tanx for all values ofx.
This means that equaltanvalues are¼units apart.
Example 7 Self Tutor
Solve tanx+
p
3=0 for 0 <x< 4 ¼.
tanx+
p
3=0
) tanx=¡
p
3
There are two points on the unit
circle with tangent¡
p
3.
They correspond to angles^23 ¼ and^53 ¼.
For the domain 0 <x< 4 ¼ we have
4 solutions: x=^23 ¼,^53 ¼,^83 ¼,or^113 ¼.
EXERCISE 9E.2
1 Solve forxon the domain 06 x 64 ¼:
a 2 cosx¡1=0 b
p
2 sinx=1 c tanx=1
2 Solve forxon the domain ¡ 2 ¼ 6 x 62 ¼:
a 2 sinx¡
p
3=0 b
p
2 cosx+1=0 c tanx=¡ 1
Start at angle and work
around to , noting down
the angle every time you
reach points A and B.
0
4 ¼
(moved over +100mm to the right!)
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\244CamAdd_09.cdr Tuesday, 28 January 2014 9:42:21 AM BRIAN