Cambridge Additional Mathematics

(singke) #1

Example 16 Self Tutor


¼ 0
O
7 ¼
6

11 ¼
6

-_Qw

O

A N

P

1

1

M

q 2 q

q

O B

Solve for 06 x 62 ¼:
a 2 sin^2 x+ sinx=0 b 2 cos^2 x+ cosx¡1=0

a 2 sin^2 x+ sinx=0
) sinx(2 sinx+1)=0
) sinx=0or¡^12

sinx=0when
x=0,¼,or 2 ¼

sinx=¡^12 when
x=^76 ¼or^116 ¼

The solutions are: x=0,¼,^76 ¼,^116 ¼,or 2 ¼.

250 Trigonometric functions (Chapter 9)

2 Write down any discoveries from your table of values in 1.
3 In the diagram alongside, the semi-circle has radius 1 unit,
and PABb =μ.
AbPO=μ f4AOP is isoscelesg
PONb =2μ fexterior angle of a triangleg
a Find in terms ofμ, the lengths of:
i OM ii AM iii ON iv PN
b Use 4 ANP and the lengths inato show that:

i cosμ=
sin 2μ
2 sinμ
ii cosμ=
1 + cos 2μ
2 cosμ
c Hence deduce that:
i sin 2μ= 2 sinμcosμ ii cos 2μ= 2 cos^2 μ¡ 1

4 Starting with cos 2μ= 2 cos^2 μ¡ 1 , show that:
a cos^2 μ=^12 +^12 cos 2μ b sin^2 μ=^12 ¡^12 cos 2μ

Sometimes we may be given trigonometric equations in quadratic form.
For example, 2 sin^2 x+ sinx=0 and 2 cos^2 x+ cosx¡1=0 are quadratic equations where the
variables are sinx and cosx respectively.
These equations can be factorised by quadratic factorisation and then solved forx.

G Trigonometric equations in quadratic form


FORM


G


The double angle formulae are
not required for the syllabus
but are very useful.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\250CamAdd_09.cdr Friday, 4 April 2014 1:31:12 PM BRIAN

Free download pdf