Cambridge Additional Mathematics

(singke) #1
10 20

5

y

-5

O 10 20 x

x

y=cosx

100° 200° 300° 400° 500° 600° 700° 800°

-1

-0.5

0.5

1

y

xx

y=y=coscosxx

yy

100°100° 200°200° 300°300° 400°400° 500°500° 600°600° 700°700° 800°800°

-1-1

-0.5-0.5

0.50.5

11

OO

y


  • ¼ O ¼ 2 ¼ x
    -4-4


44

252 Trigonometric functions (Chapter 9)

6 Find the cosine function represented in the graph.

7 On the same set of axes, graph y= 2 cosx and y=j2 cosxj for 06 x 62 ¼.

8

Use the graph of y= cosx to find the solutions of:
a cosx=¡ 0 : 4 , 06 x 6800 ± b cosx=0: 9 , 06 x 6600 ±

9 Solve in terms of¼:
a 2 sinx=¡ 1 for 06 x 64 ¼ b

p
2 sinx¡1=0for ¡ 2 ¼ 6 x 62 ¼
c 2 sin 3x+

p
3=0for 06 x 62 ¼ d

p
2 cosx¡1=0for 06 x 64 ¼

10 Simplify:

a
1 ¡cos^2 μ
1 + cosμ
b
sin®¡cos®
sin^2 ®¡cos^2 ®
c
4 sin^2 ®¡ 4
8 cos®
d
cot^2 μ
cosecμ¡ 1

11 Show that

12 Find exact solutions for ¡¼ 6 x 6 ¼:
a tan 2x=¡

p
3 b tan^2 x¡3=0

Review set 9B


#endboxedheading

1 Consider the graph alongside.
a Explain why this graph shows periodic
behaviour.
b State:
i the period
ii the maximum value
iii the minimum value

cosμ¡secμ
tanμ

simplifies to ¡sinμ.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\252CamAdd_09.cdr Tuesday, 28 January 2014 9:44:36 AM BRIAN

Free download pdf