10 205y-5O 10 20 xxy=cosx100° 200° 300° 400° 500° 600° 700° 800°-1-0.50.51yxxy=y=coscosxxyy100°100° 200°200° 300°300° 400°400° 500°500° 600°600° 700°700° 800°800°-1-1-0.5-0.50.50.511OOy- ¼ O ¼ 2 ¼ x
-4-4
44252 Trigonometric functions (Chapter 9)6 Find the cosine function represented in the graph.7 On the same set of axes, graph y= 2 cosx and y=j2 cosxj for 06 x 62 ¼.8Use the graph of y= cosx to find the solutions of:
a cosx=¡ 0 : 4 , 06 x 6800 ± b cosx=0: 9 , 06 x 6600 ±9 Solve in terms of¼:
a 2 sinx=¡ 1 for 06 x 64 ¼ bp
2 sinx¡1=0for ¡ 2 ¼ 6 x 62 ¼
c 2 sin 3x+p
3=0for 06 x 62 ¼ dp
2 cosx¡1=0for 06 x 64 ¼10 Simplify:a
1 ¡cos^2 μ
1 + cosμ
b
sin®¡cos®
sin^2 ®¡cos^2 ®
c
4 sin^2 ®¡ 4
8 cos®
d
cot^2 μ
cosecμ¡ 111 Show that12 Find exact solutions for ¡¼ 6 x 6 ¼:
a tan 2x=¡p
3 b tan^2 x¡3=0Review set 9B
#endboxedheading1 Consider the graph alongside.
a Explain why this graph shows periodic
behaviour.
b State:
i the period
ii the maximum value
iii the minimum valuecosμ¡secμ
tanμsimplifies to ¡sinμ.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\252CamAdd_09.cdr Tuesday, 28 January 2014 9:44:36 AM BRIAN