Cambridge Additional Mathematics

(singke) #1
262 Counting and the binomial expansion (Chapter 10)

EXERCISE 10C.2


1 Use the formula

¡n
r

¢
=
n!
r!(n¡r)!
to evaluate:

a

¡ 3
1

¢
b

¡ 4
2

¢
c

¡ 7
3

¢
d

¡ 10
4

¢

Check your answers using technology.

2aUse the formula

¡n
r

¢
= n!
r!(n¡r)!

to evaluate:

i

¡ 8
2

¢
ii

¡ 8
6

¢

b Show that

¡n
r

¢
=

¡ n
n¡r

¢
for all n 2 Z+, r=0, 1 , 2 , ....,n.

3 Findkif

¡ 9
k

¢
=4

¡ 7
k¡ 1

¢

Apermutationof a group of symbols isany arrangementof those symbols in a definiteorder.

For example, BAC is a permutation on the symbols A, B, and C in which all three of them are used.
We say the symbols are “taken 3 at a time”.
The set of all the different permutations on the symbols A, B, and C taken 3 at a time, is
fABC, ACB, BAC, BCA, CAB, CBAg.

Example 8 Self Tutor


List the set of all permutations on the symbols P, Q, and R taken:
a 1 at a time b 2 at a time c 3 at a time.

a fP, Q, Rg b fPQ, QP, RP,
PR, QR, RQg

c fPQR, PRQ, QPR,
QRP, RPQ, RQPg

Example 9 Self Tutor


List all permutations on the symbols W, X, Y, and Z taken 4 at a time.

WXYZ
XWYZ
YWXZ
ZWXY

WXZY
XWZY
YWZX
ZWYX

WYXZ
XYWZ
YXWZ
ZXWY

WYZX
XYZW
YXZW
ZXYW

WZXY
XZYW
YZWX
ZYWX

WZYX
XZWY
YZXW
ZYXW
There are 24 of them.

For large numbers of symbols, listing the complete set of permutations is absurd. However, we can still
count them by considering the number of options we have for filling each position.

D Permutations


cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\262CamAdd_10.cdr Monday, 23 December 2013 4:29:38 PM BRIAN

Free download pdf