Simplify
7!¡6!
6
by factorising.
Counting and the binomial expansion (Chapter 10) 261
5 Write as a product by factorising:
a 5! + 4! b 11!¡10! cd12!¡10!
e 9! + 8! + 7! f 7!¡6! + 8! g 12!¡ 2 £11! h 3 £9! + 5£8!
Example 6 Self Tutor
6 Simplify by factorising:
a 12!¡11!
11
b 10! + 9!
11
c 10!¡8!
89
d 10!¡9!
9!
e
6! + 5!¡4!
4!
f
n!+(n¡1)!
(n¡1)!
g
n!¡(n¡1)!
n¡ 1
h
(n+ 2)! + (n+ 1)!
n+3
THE BINOMIAL COEFFICIENT
Thebinomial coefficientis defined by
¡n
r
¢
=
n(n¡1)(n¡2)::::(n¡r+ 2)(n¡r+1)
r(r¡1)(r¡2):::: 2 £ 1
| {z }
factor form
=
n!
r!(n¡r)!
| {z }
factorial form
The binomial coefficient is sometimes written nCr or Crn.
Example 7 Self Tutor
Use the formula
¡n
r
¢
=
n!
r!(n¡r)!
to evaluate: a
¡ 5
2
¢
b
¡ 11
7
¢
a
¡ 5
2
¢
=
5!
2!(5¡2)!
=
5!
2!£3!
=10
b
¡ 11
7
¢
=
11!
7!(11¡7)!
=
11!
7!£4!
=
7920
24
= 330
7!¡6!
6
=
7 £6!¡6!
6
=
6!(7¡1)
6
=6!
1
1
=
5 £ 4 £ 3 £ 2 £ 1
2 £ 1 £ 3 £ 2 £ 1
=
11 £ 10 £ 9 £ 8 £ 7 £ 6 £ 5 £ 4 £ 3 £ 2 £ 1
7 £ 6 £ 5 £ 4 £ 3 £ 2 £ 1 £ 4 £ 3 £ 2 £ 1
7! + 9!
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_10\261CamAdd_10.cdr Wednesday, 29 January 2014 9:04:43 AM BRIAN