Vectors (Chapter 11) 285
Example 3 Self Tutor
Findkgiven that
μ
¡^13
k
¶
is a unit vector.
Since
μ
¡^13
k
¶
is a unit vector,
q
(¡^13 )^2 +k^2 =1
)
q
1
9 +k
(^2) =1
)^19 +k^2 =1 fsquaring both sidesg
) k^2 =^89
) k=§
p 8
3
EXERCISE 11B
1 Find the magnitude of:
a
μ
3
4
¶
b
μ
¡ 4
3
¶
c
μ
2
0
¶
d
μ
¡ 2
2
¶
e
μ
0
¡ 3
¶
2 Find the length of:
a i+j b 5 i¡ 12 j c ¡i+4j d 3 i e kj
3 Which of the following are unit vectors?
a
μ
0
¡ 1
¶
b
Ã
¡p^12
p^1
2
!
c
à 2
3
1
3
!
d
Ã
¡^35
¡^45
!
e
à 2
7
¡^57
!
4 Findkfor the unit vectors:
a
μ
0
k
¶
b
μ
k
0
¶
c
μ
k
1
¶
d
μ
k
k
¶
e
μ 1
2
k
¶
5 Given v=
μ
8
p
¶
and jvj=
p
73 units, find the possible values ofp.
VECTOR ADDITION
Consider adding vectors a=
μ
a 1
a 2
¶
and b=
μ
b 1
b 2
¶
Notice that:
² the horizontal step for a+b is a 1 +b 1
² the vertical step for a+b is a 2 +b 2.
If a=
μ
a 1
a 2
¶
and b=
μ
b 1
b 2
¶
then a+b=
μ
a 1 +b 1
a 2 +b 2
¶
C Operations with plane vectors
a
ab+
b b^2
b 1
a 1
a 2
a+ 2 b 2
a+ 1 b 1
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\285CamAdd_11.cdr Monday, 6 January 2014 1:02:31 PM BRIAN