Vectors (Chapter 11) 285Example 3 Self Tutor
Findkgiven thatμ
¡^13
k¶
is a unit vector.Sinceμ
¡^13
k¶
is a unit vector,q
(¡^13 )^2 +k^2 =1)q
1
9 +k(^2) =1
)^19 +k^2 =1 fsquaring both sidesg
) k^2 =^89
) k=§
p 8
3
EXERCISE 11B
1 Find the magnitude of:aμ
3
4¶
bμ
¡ 4
3¶
cμ
2
0¶
dμ
¡ 2
2¶
eμ
0
¡ 3¶2 Find the length of:
a i+j b 5 i¡ 12 j c ¡i+4j d 3 i e kj
3 Which of the following are unit vectors?aμ
0
¡ 1¶
bÃ
¡p^12
p^1
2!
cà 2
3
1
3!
dÃ
¡^35¡^45!
eà 2
7
¡^57!4 Findkfor the unit vectors:aμ
0
k¶
bμ
k
0¶
cμ
k
1¶
dμ
k
k¶
eμ 1
2
k¶5 Given v=μ
8
p¶
and jvj=p
73 units, find the possible values ofp.VECTOR ADDITION
Consider adding vectors a=μ
a 1
a 2¶
and b=μ
b 1
b 2¶Notice that:
² the horizontal step for a+b is a 1 +b 1
² the vertical step for a+b is a 2 +b 2.If a=μ
a 1
a 2¶
and b=μ
b 1
b 2¶
then a+b=μ
a 1 +b 1
a 2 +b 2¶C Operations with plane vectors
aab+
b b^2b 1a 1a 2a+ 2 b 2a+ 1 b 14037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\285CamAdd_11.cdr Monday, 6 January 2014 1:02:31 PM BRIAN