322 Matrices (Chapter 12)
4aIf A=
à 1
2
1
2
1
2
1
2
!
, determine A^2.
b Comment on the following argument for a 2 £ 2 matrixAsuch that A^2 =A:
A^2 =A
) A^2 ¡A=O
) A(A¡I)=O
) A=O or A¡I=O
) A=O or I
c Findall 2 £ 2 matricesAfor which A^2 =A. Hint: Let A=
μ
ab
cd
¶
.
5 Giveoneexample which shows that “if A^2 =O then A=O”isafalsestatement.
Example 9 Self Tutor
For A=
μ
12
34
¶
, find constantsaandbsuch that A^2 =aA+bI.
Since A^2 =aA+bI,
μ
12
34
¶μ
12
34
¶
=a
μ
12
34
¶
+b
μ
10
01
¶
)
μ
1+6 2+8
3 + 12 6 + 16
¶
=
μ
a 2 a
3 a 4 a
¶
+
μ
b 0
0 b
¶
)
μ
710
15 22
¶
=
μ
a+b 2 a
3 a 4 a+b
¶
Thus a+b=7 and 2 a=10
) a=5 and b=2
Checking for consistency:
3 a= 3(5) = 15 X 4 a+b= 4(5) + (2) = 22 X
6 Find constantsaandbsuch that A^2 =aA+bI, given:
a A=
μ
12
¡ 12
¶
b A=
μ
31
2 ¡ 2
¶
7aFor A=
μ
12
¡ 1 ¡ 3
¶
, find constantspandqsuch that A^2 =pA+qI.
b Hence, writeA^3 in the linear form rA+sI whererandsare scalars.
c WriteA^4 in linear form.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\322CamAdd_12.cdr Tuesday, 7 January 2014 5:57:36 PM BRIAN