Cambridge Additional Mathematics

(singke) #1
322 Matrices (Chapter 12)

4aIf A=

à 1
2

1
2
1
2

1
2

!
, determine A^2.

b Comment on the following argument for a 2 £ 2 matrixAsuch that A^2 =A:
A^2 =A
) A^2 ¡A=O
) A(A¡I)=O
) A=O or A¡I=O
) A=O or I

c Findall 2 £ 2 matricesAfor which A^2 =A. Hint: Let A=

μ
ab
cd


.

5 Giveoneexample which shows that “if A^2 =O then A=O”isafalsestatement.

Example 9 Self Tutor


For A=

μ
12
34


, find constantsaandbsuch that A^2 =aA+bI.

Since A^2 =aA+bI,

μ
12
34

¶μ
12
34


=a

μ
12
34


+b

μ
10
01


)

μ
1+6 2+8
3 + 12 6 + 16


=

μ
a 2 a
3 a 4 a


+

μ
b 0
0 b


)

μ
710
15 22


=

μ
a+b 2 a
3 a 4 a+b


Thus a+b=7 and 2 a=10
) a=5 and b=2
Checking for consistency:
3 a= 3(5) = 15 X 4 a+b= 4(5) + (2) = 22 X

6 Find constantsaandbsuch that A^2 =aA+bI, given:

a A=

μ
12
¡ 12


b A=

μ
31
2 ¡ 2


7aFor A=

μ
12
¡ 1 ¡ 3


, find constantspandqsuch that A^2 =pA+qI.

b Hence, writeA^3 in the linear form rA+sI whererandsare scalars.
c WriteA^4 in linear form.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\322CamAdd_12.cdr Tuesday, 7 January 2014 5:57:36 PM BRIAN

Free download pdf