Cambridge Additional Mathematics

(singke) #1
Matrices (Chapter 12) 329

b In matrix form, the system is

μ
23
54

¶μ
x
y


=

μ
4
17


which has the form AX=B.

c Premultiplying by A¡^1 , A¡^1 AX=A¡^1 B
) X=A¡^1 B

=¡^17

μ
¡ 35
14


=

μ
5
¡ 2


) x=5and y=¡ 2.

EXERCISE 12E


1 Convert into matrix equations:

a

½
3 x¡y=8
2 x+3y=6

b

½
4 x¡ 3 y=11
3 x+2y=¡ 5

c

½
3 a¡b=6
2 a+7b=¡ 4

2 Use matrix algebra to solve the system:

a

½
2 x¡y=6
x+3y=14

b

½
5 x¡ 4 y=5
2 x+3y=¡ 13

c

½
x¡ 2 y=7
5 x+3y=¡ 2

d

½
3 x+5y=4
2 x¡y=11

e

½
4 x¡ 7 y=8
3 x¡ 5 y=0

f

½
7 x+11y=18
11 x¡ 7 y=¡ 11

3aShow that if AX=B then X=A¡^1 B, whereas if XA=B then X=BA¡^1.
b FindXif:

i

μ
¡ 65
¡ 34


X=

μ
3 ¡ 2
01


ii X

μ
12
5 ¡ 1


=

μ
14 ¡ 5
22 0


iii

μ
13
2 ¡ 1


X=

μ
1 ¡ 3
42


iv X

μ
24
3 ¡ 1


=

μ
810
¡ 515


4aConsider the system

½
2 x¡ 3 y=8
4 x¡y=11

.

i Write the equations in the form AX=B, and find detA.
ii Does the system have a unique solution? If so, find it.

b Consider the system

½
2 x+ky=8
4 x¡y=11

.

i Write the system in the form AX=B, and find detA.
ii For what value(s) ofkdoes the system have a unique solution? Find the unique solution.
iii Findkwhen the system does not have a unique solution. How many solutions does the system
have in this case?

)

μ
x
y


=¡^17

μ
4 ¡ 3
¡ 52

¶μ
4
17


4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\329CamAdd_12.cdr Friday, 4 April 2014 5:11:07 PM BRIAN

Free download pdf