Matrices (Chapter 12) 329
b In matrix form, the system is
μ
23
54
¶μ
x
y
¶
=
μ
4
17
¶
which has the form AX=B.
c Premultiplying by A¡^1 , A¡^1 AX=A¡^1 B
) X=A¡^1 B
=¡^17
μ
¡ 35
14
¶
=
μ
5
¡ 2
¶
) x=5and y=¡ 2.
EXERCISE 12E
1 Convert into matrix equations:
a
½
3 x¡y=8
2 x+3y=6
b
½
4 x¡ 3 y=11
3 x+2y=¡ 5
c
½
3 a¡b=6
2 a+7b=¡ 4
2 Use matrix algebra to solve the system:
a
½
2 x¡y=6
x+3y=14
b
½
5 x¡ 4 y=5
2 x+3y=¡ 13
c
½
x¡ 2 y=7
5 x+3y=¡ 2
d
½
3 x+5y=4
2 x¡y=11
e
½
4 x¡ 7 y=8
3 x¡ 5 y=0
f
½
7 x+11y=18
11 x¡ 7 y=¡ 11
3aShow that if AX=B then X=A¡^1 B, whereas if XA=B then X=BA¡^1.
b FindXif:
i
μ
¡ 65
¡ 34
¶
X=
μ
3 ¡ 2
01
¶
ii X
μ
12
5 ¡ 1
¶
=
μ
14 ¡ 5
22 0
¶
iii
μ
13
2 ¡ 1
¶
X=
μ
1 ¡ 3
42
¶
iv X
μ
24
3 ¡ 1
¶
=
μ
810
¡ 515
¶
4aConsider the system
½
2 x¡ 3 y=8
4 x¡y=11
.
i Write the equations in the form AX=B, and find detA.
ii Does the system have a unique solution? If so, find it.
b Consider the system
½
2 x+ky=8
4 x¡y=11
.
i Write the system in the form AX=B, and find detA.
ii For what value(s) ofkdoes the system have a unique solution? Find the unique solution.
iii Findkwhen the system does not have a unique solution. How many solutions does the system
have in this case?
)
μ
x
y
¶
=¡^17
μ
4 ¡ 3
¡ 52
¶μ
4
17
¶
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\329CamAdd_12.cdr Friday, 4 April 2014 5:11:07 PM BRIAN