362 Introduction to differential calculus (Chapter 13)
THE DERIVATIVE OF tanx
Consider y= tanx=
sinx
cosx
We let u= sinx and v= cosx
)
du
dx
= cosx and
dv
dx
=¡sinx
)
dy
dx
=
u^0 v¡uv^0
v^2
fquotient ruleg
=
cosxcosx¡sinx(¡sinx)
[cosx]^2
=
cos^2 x+ sin^2 x
cos^2 x
=
1
cos^2 x
fsince sin^2 x+ cos^2 x=1g
= sec^2 x
Function Derivative
sinx cosx
cosx ¡sinx
tanx sec^2 x
THE DERIVATIVES OF sin[f(x)], cos[f(x)], AND tan[f(x)]
Suppose y= sin[f(x)]
If we let u=f(x), then y= sinu.
But
dy
dx
=
dy
du
du
dx
fchain ruleg
)
dy
dx
= cosu£f^0 (x)
= cos[f(x)]£f^0 (x)
We can perform the same procedure for cos[f(x)] and tan[f(x)], giving the following results:
Function Derivative
sin[f(x)] cos[f(x)]f^0 (x)
cos[f(x)] ¡sin[f(x)]f^0 (x)
tan[f(x)] sec^2 [f(x)]f^0 (x)
Example 17 Self Tutor
Differentiate with respect tox:
a xsinx b 4 tan^2 (3x)
a If y=xsinx
then by the product rule
dy
dx
= (1) sinx+(x) cosx
= sinx+xcosx
b If y= 4 tan^2 (3x)
= 4[tan(3x)]^2
=4u^2 where u= tan(3x)
dy
dx
=
dy
du
du
dx
fchain ruleg
)
dy
dx
=8u£
du
dx
= 8 tan(3x)£3 sec^2 (3x)
= 24 sin(3x) sec^3 (3x)
DERIVATIVE
DEMO
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\362CamAdd_13.cdr Tuesday, 7 January 2014 9:55:05 AM BRIAN