Cambridge Additional Mathematics

(singke) #1
Introduction to differential calculus (Chapter 13) 363

EXERCISE 13K


1 Find
dy
dx
for:

a y= sin(2x) b y= sinx+ cosx c y= cos(3x)¡sinx
d y= sin(x+1) e y= cos(3¡ 2 x) f y= tan(5x)
g y= sin(x 2 )¡3 cosx h y= 3 tan(¼x) i y= 4 sinx¡cos(2x)
2 Differentiate with respect tox:
a x^2 + cosx b tanx¡3 sinx c excosx d e¡xsinx
e ln(sinx) f e^2 xtanx g sin(3x) h cos(x 2 )

i 3 tan(2x) j xcosx k
sinx
x
l xtanx

3 Differentiate with respect tox:
a sin(x^2 ) b cos(

p
x) c

p
cosx d sin^2 x
e cos^3 x f cosxsin(2x) g cos(cosx) h cos^3 (4x)

i
1
sinx
j
1
cos(2x)
k
2
sin^2 (2x)
l
8
tan^3 (x 2 )

4 Find the gradient of the tangent to:
a f(x) = sin^3 x at the point where x=^23 ¼
b f(x) = cosxsinx at the point where x=¼ 4.

Given a function f(x), the derivative f^0 (x) is known as thefirst derivative.
Thesecond derivativeof f(x) is the derivative of f^0 (x),orthe derivative of the first derivative.

We use f^00 (x) or y^00 or
d^2 y
dx^2

to represent the second derivative.

f^00 (x) reads “fdouble dashedx”.
d^2 y
dx^2

=
d
dx

³dy
dx

́
reads “dee twoyby deexsquared”.

Example 18 Self Tutor


Find f^00 (x) given that f(x)=x^3 ¡^3
x

Now f(x)=x^3 ¡ 3 x¡^1
) f^0 (x)=3x^2 +3x¡^2
) f^00 (x)=6x¡ 6 x¡^3

=6x¡
6
x^3

L Second derivatives

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\363CamAdd_13.cdr Tuesday, 7 January 2014 9:55:13 AM BRIAN

Free download pdf