Introduction to differential calculus (Chapter 13) 365
Review set 13A
#endboxedheading
1 Evaluate:
a lim
x! 1
(6x¡7) b lim
h! 0
2 h^2 ¡h
h
c lim
x! 4
x^2 ¡ 16
x¡ 4
2 Find, from first principles, the derivative of:
a f(x)=x^2 +2x b y=4¡ 3 x^2
3 In theOpening Problemon page 334 , the altitude of the jumper is given by
f(t) = 452¡ 4 : 8 t^2 metres, where 06 t 63 seconds.
a Find f^0 (t) = lim
h! 0
f(t+h)¡f(t)
h
.
b Hencefind the speed of the jumper when t=2seconds.
4 If f(x)=7+x¡ 3 x^2 , find: a f(3) b f^0 (3) c f^00 (3).
5 Find
dy
dx
for: a y=3x^2 ¡x^4 b y=
x^3 ¡x
x^2
6 At what point on the curve f(x)=
x
p
x^2 +1
does the tangent have gradient 1?
7 Find dy
dx
if: a y=ex
(^3) +2
b y=ln
³
x+3
x^2
́
8 Given y=3ex¡e¡x, show that
d^2 y
dx^2
=y.
9 Differentiate with respect tox:
a 5 x¡ 3 x¡^1 b (3x^2 +x)^4 c (x^2 + 1)(1¡x^2 )^3
10 Find all points on the curve y=2x^3 +3x^2 ¡ 10 x+3 where the gradient of the tangent is 2.
11 If y=
p
5 ¡ 4 x, find: a
dy
dx
b
d^2 y
dx^2
12 Differentiate with respect tox:
a sin(5x)ln(x) b sin(x) cos(2x) c e¡^2 xtanx
13 Find the gradient of the tangent to y= sin^2 x at the point where x=¼ 3.
14 Find the derivative with respect toxof:
a f(x)=(x^2 +3)^4 b g(x)=
p
x+5
x^2
15 Find f^00 (2) for:
a f(x)=3x^2 ¡
1
x
b f(x)=
p
x
16 Differentiate with respect tox:
a 10 x¡sin(10x) b ln
³
1
cosx
́
c sin(5x)ln(2x)
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\365CamAdd_13.cdr Tuesday, 7 January 2014 12:06:11 PM BRIAN