364 Introduction to differential calculus (Chapter 13)
EXERCISE 13L
1 Find f^00 (x) given that:
a f(x)=3x^2 ¡ 6 x+2 b f(x)=
2
p
x
¡ 1 c f(x)=2x^3 ¡ 3 x^2 ¡x+5
d f(x)=
2 ¡ 3 x
x^2
e f(x)=(1¡ 2 x)^3 f f(x)=
x+2
2 x¡ 1
2 Find
d^2 y
dx^2
given that:
a y=x¡x^3 b y=x^2 ¡
5
x^2
c y=2¡
3
p
x
d y=^4 ¡x
x
e y=(x^2 ¡ 3 x)^3 f y=x^2 ¡x+^1
1 ¡x
3 Given f(x)=x^3 ¡ 2 x+5, find:
a f(2) b f^0 (2) c f^00 (2)
4 Suppose y=Aekx whereAandkare constants. Show that:
a
dy
dx
=ky b
d^2 y
dx^2
=k^2 y
5 Find the value(s) ofxsuch that f^00 (x)=0, given:
a f(x)=2x^3 ¡ 6 x^2 +5x+1 b f(x)=
x
x^2 +2
x ¡ 1 0 1
f(x) ¡
f^0 (x)
f^00 (x)
6 Consider the function f(x)=2x^3 ¡x.
Complete the following table by indicating whether f(x), f^0 (x),
and f^00 (x) are positive (+), negative (¡), or zero ( 0 ) at the given
values ofx.
7 Suppose f(x) = 2 sin^3 x¡3 sinx.
a Show that f^0 (x)=¡3 cosxcos 2x. b Find f^00 (x).
8 Find
d^2 y
dx^2
given:
a y=¡lnx b y=xlnx c y=(lnx)^2
9 Given f(x)=x^2 ¡
1
x
, find:
a f(1) b f^0 (1) c f^00 (1)
10 If y=2e^3 x+5e^4 x, show that
d^2 y
dx^2
¡ 7
dy
dx
+12y=0.
11 If y= sin(2x+3), show that
d^2 y
dx^2
+4y=0.
12 If y= 2 sinx+ 3 cosx, show that y^00 +y=0 where y^00 represents d
(^2) y
dx^2
.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\364CamAdd_13.cdr Tuesday, 7 January 2014 11:34:40 AM BRIAN