0
x
- 20
A_'(x)
xcm
ycm
xcm
open
DEMO
+ -
5
0 12.5
x
d
d__Vv~
394 Applications of differential calculus (Chapter 14)
Step 3: dV
dx
=12x^2 ¡ 260 x+ 1000
= 4(3x^2 ¡ 65 x+ 250)
= 4(3x¡50)(x¡5)
)
dV
dx
=0 when x=^503 =16^23 or x=5
Step 4:
dV
dx
has sign diagram:
Step 5: There is a local maximum whenx=5. This is the global maximum for the given domain.
Step 6: The maximum volume is obtained when x=5, which is when 5 cm squares are cut
from the corners.
Example 19 Self Tutor
A 4 litre container must have a square base, vertical sides,
and an open top. Find the most economical shape which
minimises the surface area of material needed.
Step 1: Let the base lengths bexcm and the depth beycm.
The volume V=length£width£depth
) V=x^2 y
) 4000 =x^2 y .... (1) f 1 litre ́ 1000 cm^3 g
Step 2: The total surface area A=area of base+4(area of one side)
=x^2 +4xy
=x^2 +4x
³
4000
x^2
́
fusing (1)g
) A(x)=x^2 + 16 000x¡^1 where x> 0
Step 3: A^0 (x)=2x¡16 000x¡^2
) A^0 (x)=0 when 2 x=
16 000
x^2
) 2 x^3 = 16 000
) x=
p 3
8000 = 20
Step 4: A^0 (x) has sign diagram:
If x=10,
A^0 (10) = 20¡16 000 100
=20¡ 160
=¡ 140
If x=30,
A^0 (30) = 60¡16 000 900
¼ 60 ¡ 17 : 8
¼ 42 : 2
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_14\394CamAdd_14.cdr Wednesday, 9 April 2014 1:07:47 PM BRIAN