Integration (Chapter 15) 4272 Integrate with respect tox:
a 3 sinx¡ 2 b 4 x¡2 cosx c sinx¡2 cosx+exd x^2p
x¡10 sinx e
x(x¡1)
3
+ cosx f ¡sinx+2p
x3 Find:aZ
(x^2 +3x¡2)dx bZ μ
p
x¡
1
p
x¶
dx cZ ³
2 ex¡
1
x^2́
dxdZ
1 ¡ 4 x
x
p
x
dx eZ
(2x+1)^2 dx fZ ³
x+
1
x́ 2
dxgZ
2 x¡ 1
p
x
dx hZ
x^2 ¡ 4 x+10
x^2
p
x
dx iZ
(x+1)^3 dx4 Find:aZ ¡
p
x+^12 cosx¢
dx bZ
(2et¡4 sint)dt cZ
(3 cost¡sint)dt5 Findyif:a dy
dx=6 b dy
dx=4x^2 c dy
dx=5p
x¡x^2d
dy
dx
=
1
x^2
e
dy
dx
=2ex¡ 5 f
dy
dx
=4x^3 +3x^26 Find f(x) if:a f^0 (x)=(1¡ 2 x)^2 b f^0 (x)=p
x¡
2
p
xc f^0 (x)=
x^2 ¡ 5
x^2PARTICULAR VALUES
We can find the constant of integrationcif we are given a particular value of the function.Example 9 Self Tutor
Find f(x) given that:
a f^0 (x)=x^3 ¡ 2 x^2 +3 and f(0) = 2 b f^0 (x) = 2 sinx¡p
x and f(0) = 4.a Since f^0 (x)=x^3 ¡ 2 x^2 +3,f(x)=Z
(x^3 ¡ 2 x^2 +3)dx) f(x)=
x^4
4
¡
2 x^3
3
+3x+cBut f(0) = 2,soc=2Thus f(x)=
x^4
4¡
2 x^3
3+3x+2b f(x)=Z μ
2 sinx¡x1
2¶
dx) f(x)=2£(¡cosx)¡
x3
2
3
2+c) f(x)=¡2 cosx¡^23 x3(^2) +c
But f(0) = 4,
so ¡2 cos 0¡0+c=4
) c=6
Thus f(x)=¡2 cosx¡^23 x
3
(^2) +6.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\427CamAdd_15.cdr Monday, 7 April 2014 3:59:18 PM BRIAN