434 Integration (Chapter 15)Bernhard Riemannxyaby = f(x)A=Zbaf(x)dxOAREA
FINDER2-224y6 xsemi-circleOHistorical note
#endboxedheading
Following the work of Newton and Leibniz, integration was rigorously formalised using limits by the
German mathematicianBernhard Riemann( 1826 - 1866 ).Iff(x)> 0 on the intervala 6 x 6 b, we have seen that the area under the curve isA=Zbaf(x)dx.
This is known as theRiemann integral.Review set 15A
#endboxedheading1aSketch the region between the curve y=
4
1+x^2
and thex-axis for 06 x 61.Divide the interval into 5 equal parts and display the 5 upper and lower rectangles.
b Use thearea findersoftware to find the lower and upper rectangle sums for
n=5, 50 , 100 , and 500.c Give your best estimate forZ 104
1+x^2
dx and compare this answer with¼.2 The graph of y=f(x) is illustrated:
Evaluate the following using area interpretation:aZ 40f(x)dx bZ 64f(x)dx3 Integrate with respect tox:a
4
p
x
b sin(4x¡5) c e^4 ¡^3 x4 Find the exact value of:aZ¡ 1¡ 5p
1 ¡ 3 xdx bZ ¼
2
0cos¡x
2¢
dx5 By differentiating y=p
x^2 ¡ 4 , findZ
x
p
x^2 ¡ 4dx.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\434CamAdd_15.cdr Monday, 7 April 2014 4:00:10 PM BRIAN