Applications of integration (Chapter 16) 441Example 4 Self Tutor
UseZba[yU¡yL]dx to find the area bounded by thex-axis and y=x^2 ¡ 2 x.The curve cuts thex-axis when y=0
) x^2 ¡ 2 x=0
) x(x¡2) = 0
) x=0or 2
) thex-intercepts are 0 and 2.Area=Z 20[yU¡yL]dx=Z 20[0¡(x^2 ¡ 2 x)]dx=Z 20(2x¡x^2 )dx=·
x^2 ¡
x^3
3̧ 20
=¡
4 ¡^83¢
¡(0)) the area is^43 units^2.Example 5 Self Tutor
Find the area of the region enclosed by y=x+2and y=x^2 +x¡ 2.y=x+2meets y=x^2 +x¡ 2
where x^2 +x¡2=x+2
) x^2 ¡4=0
) (x+ 2)(x¡2) = 0
) x=§ 2Area=Z 2¡ 2[yU¡yL]dx=Z 2¡ 2[(x+2)¡(x^2 +x¡2)]dx=Z 2¡ 2(4¡x^2 )dx=·
4 x¡
x^3
3̧ 2¡ 2
=¡
8 ¡^83¢
¡¡
¡8+^83¢=10^23 units^2
) the area is 1023 units^2 :2yO xy=0Uy=x-2xL 2-2^122-2yO x
y=x+2y=x +x-2 24037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_16\441CamAdd_16.cdr Monday, 7 April 2014 4:17:36 PM BRIAN