442 Applications of integration (Chapter 16)Example 6 Self Tutor
Find the total area of the regions contained by y=f(x) and thex-axis for f(x)=x^3 +2x^2 ¡ 3 x.f(x)=x^3 +2x^2 ¡ 3 x
=x(x^2 +2x¡3)
=x(x¡1)(x+3)
) y=f(x) cuts the x-axis at 0 , 1 , and¡ 3.Total area=Z 0¡ 3(x^3 +2x^2 ¡ 3 x)dx¡Z 10(x^3 +2x^2 ¡ 3 x)dx=·
x^4
4
+
2 x^3
3
¡
3 x^2
2̧ 0¡ 3¡·
x^4
4
+
2 x^3
3
¡
3 x^2
2̧ 10
=¡0 ¡¡ (^1114)
¢
¡
¡
¡ 127 ¡ 0
¢
=11^56 units^2
EXERCISE 16B
1 Find the exact value of the area bounded by:
a thex-axis and y=x^2 +x¡ 2
b thex-axis, y=e¡x¡ 1 , and x=2
c thex-axis and the part of y=3x^2 ¡ 8 x+4below thex-axis
d y= cosx, thex-axis, x=¼ 2 , and x=^32 ¼
e y=x^3 ¡ 4 x, thex-axis, x=1, and x=2
f y= sinx¡ 1 , thex-axis, x=0, and x=¼ 22 Find the area of the region enclosed by y=x^2 ¡ 2 x and y=3.3 Consider the graphs of y=x¡ 3 and y=x^2 ¡ 3 x.
a Sketch the graphs on the same set of axes.
b Find the coordinates of the points where the graphs meet.
c Find the area of the region enclosed by the two graphs.4 Determine the area of the region enclosed by y=p
x and y=x^2.5aOn the same set of axes, graph y=ex¡ 1 and y=2¡ 2 e¡x, showing axes intercepts and
asymptotes.
b Find algebraically the points of intersection of y=ex¡ 1 and y=2¡ 2 e¡x.
c Find the area of the region enclosed by the two curves.6 Find the area of the region bounded by y=2ex, y=e^2 x, and x=0.7 On the same set of axes, sketch y=2x and y=4x^2.
Find the area of the region enclosed by these functions.-3 1 xy
y = x + 2x - 3x 32Ocyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_16\442CamAdd_16.cdr Monday, 7 April 2014 4:17:43 PM BRIAN