Cambridge Additional Mathematics

(singke) #1
28 0.m
56 0.m

1

1.0
08.
06.
04.
02.
x

y

O

y = ~`x

498 Answers

15 av(t)=3¡^1
2

p
t+1

a(t)=^1
4(t+1)

(^32)
bx(0) =¡ 1 , v(0) = 2: 5 , a(0) = 0: 25
Particle is 1 cm to the left of the origin, is travelling to the
right at 2 : 5 cm s¡^1 , and accelerating at 0 : 25 cm s¡^2.
c Particle is 21 cm to the right of the origin, is travelling to the
right at 2 : 83 cm s¡^1 , and accelerating at 0 :009 26cm s¡^2.
dnever changes direction enever decreasing
16 bA= 200x¡ 2 x^2 ¡^12 ¼x^2 c
17 a v(0) = 0cm s¡^1 , v(^12 )=¡¼cm s¡^1 , v(1) = 0cm s¡^1 ,
v(^32 )=¼cm s¡^1 ,v(2) = 0cm s¡^1
b 06 t 61 , 26 t 63 , 46 t 65 , etc.
So, for 2 n 6 t 62 n+1,n2f 0 , 1 , 2 , 3 , ....g
18 x=
k
2
³
1 ¡p^13
́
19 3 : 60 ms¡^1
20 increasing at 0 : 128 radians per second
21 a
p 3
2 ¼cm s
¡ (^1) b 0 cm s¡ 1
22 a i y=¡
a^2
4 b



  • a
    2 b
    x iiwhen y=0,x=
    a
    2
    biy=¡
    2 b
    a
    x+b iiwhen x=0,y=b
    iii Hint: Let P^00 be the point on the line y=¡bwhere
    the distance to P is shortest.
    Show that FP=P^00 P.
    ciHint: Show that 4 FPP^0 »= 4 P^00 PP^0.
    iiHint: Show that the tangents meet at
    ³a+c
    2
    ,
    ac
    4 b
    ́
    .
    EXERCISE 15A.1
    1a i 0 : 6 units^2 ii 0 : 4 units^2 b 0 : 5 units^2
    2a 0 : 737 units^2 b 0 : 653 units^2
    3 n AL AU
    10 2 : 1850 2 : 4850
    25 2 : 2736 2 : 3936
    50 2 : 3034 2 : 3634
    100 2 : 3184 2 : 3484
    500 2 : 3303 2 : 3363
    converges to^73
    4a i n AL AU
    5 0 :160 00 0 :360 00
    10 0 :202 50 0 :302 50
    50 0 :240 10 0 :260 10
    100 0 :245 03 0 :255 03
    500 0 :249 00 0 :251 00
    1000 0 :249 50 0 :250 50
    10 000 0 :249 95 0 :250 05
    ii n AL AU
    5 0 :400 00 0 :600 00
    10 0 :450 00 0 :550 00
    50 0 :490 00 0 :510 00
    100 0 :495 00 0 :505 00
    500 0 :499 00 0 :501 00
    1000 0 :499 50 0 :500 50
    10 000 0 :499 95 0 :500 05
    iii n AL AU
    5 0 :549 74 0 :749 74
    10 0 :610 51 0 :710 51
    50 0 :656 10 0 :676 10
    100 0 :661 46 0 :671 46
    500 0 :665 65 0 :667 65
    1000 0 :666 16 0 :667 16
    10 000 0 :666 62 0 :666 72
    iv n AL AU
    5 0 :618 67 0 :818 67
    10 0 :687 40 0 :787 40
    50 0 :738 51 0 :758 51
    100 0 :744 41 0 :754 41
    500 0 :748 93 0 :750 93
    1000 0 :749 47 0 :750 47
    10 000 0 :749 95 0 :750 05
    bi^14 ii^12 iii^23 iv^34 c area=^1
    a+1
    5a n Rational bounds for¼
    10 2 : 9045 <¼< 3 : 3045
    50 3 : 0983 <¼< 3 : 1783
    100 3 : 1204 <¼< 3 : 1604
    200 3 : 1312 <¼< 3 : 1512
    1000 3 : 1396 <¼< 3 : 1436
    10 000 3 : 1414 <¼< 3 : 1418
    b n= 10 000
    EXERCISE 15A.2
    1a
    b n AL AU
    5 0 : 5497 0 : 7497
    10 0 : 6105 0 : 7105
    50 0 : 6561 0 : 6761
    100 0 : 6615 0 : 6715
    500 0 : 6656 0 : 6676
    c
    R 1
    0
    p
    xdx¼ 0 : 67
    2aAL=^2
    n
    nP¡ 1
    i=0
    p
    1+xi^3 , AU=^2
    n
    Pn
    i=1
    p
    1+xi^3
    b n AL AU
    50 3 : 2016 3 : 2816
    100 3 : 2214 3 : 2614
    500 3 : 2373 3 : 2453
    c
    R 2
    0
    p
    1+x^3 dx¼ 3 : 24
    t


  • 0
    a(t)
    t




  • 0
    v(t)
    cyan magenta yellow black
    (^05255075950525507595)
    100 100
    (^05255075950525507595)
    100 100 IB HL OPT
    Sets Relations Groups
    Y:\HAESE\CAM4037\CamAdd_AN\498CamAdd_AN.cdr Tuesday, 8 April 2014 8:40:04 AM BRIAN



Free download pdf