Cambridge Additional Mathematics

(singke) #1
y

x

y = |(x + 2)(x - 3)|

y = (x + 2)(x - 3)

-2 3

6

-6

O

y

x
-4

O 1 4

y

x

8

O^14

y

x

4
-1 4
O

y

x
-4

-1 4

O

y

x
-8

-4 O 1

y

x
-12

O (^14)
y
x
12
-4 1
O
Quadratics (Chapter 3) 79
3 Match each quadratic function with its corresponding graph.
a y=2(x¡1)(x¡4) b y=¡(x+ 1)(x¡4) c y=(x¡1)(x¡4)
d y=(x+ 1)(x¡4) e y=2(x+ 4)(x¡1) f y=¡3(x+ 4)(x¡1)
g y=¡(x¡1)(x¡4) h y=¡3(x¡1)(x¡4)
ABC
DEF
GH


Example 13 Self Tutor


Sketch the graph of y=j(x+ 2)(x¡3)j.

We first sketch y=(x+ 2)(x¡3).

y=(x+ 2)(x¡3) hasx-intercepts¡ 2 and 3 , and
y-intercept 2(¡3) =¡ 6.
The part of the graph that is below thex-axis is
then reflected in thex-axis to produce the graph of
y=j(x+ 2)(x¡3)j.

4 Sketch the graph of:
a y=j(x+ 4)(x¡5)j b f(x)=j¡(x¡1)(x¡6)j
c y=j2(x¡2)(x+2)j d f(x)=

̄
̄¡3(x+3)^2
̄
̄

y

x

4

O 1 4

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_03\079CamAdd_03.cdr Friday, 20 December 2013 11:15:12 AM GR8GREG

Free download pdf