Cambridge Additional Mathematics

(singke) #1
To find the range of a function on a
given domain, you must evaluate the
function at the endpoints of the domain.
y

x

y=x -6x-2 2
(7 5),

(-2 14),

(3 -11),

O

84 Quadratics (Chapter 3)

2 For each of the following quadratics:
i state the axis of symmetry ii find the coordinates of the vertex
iii find the axes intercepts iv sketch the quadratic v state the range.
a y=x^2 ¡ 8 x+7 b y=¡x^2 ¡ 6 x¡ 8 c f(x)=6x¡x^2
d y=¡x^2 +3x¡ 2 e y=2x^2 +4x¡ 24 f f(x)=¡ 3 x^2 +4x¡ 1
g f(x)=2x^2 ¡ 5 x+2 h y=4x^2 ¡ 8 x¡ 5 i y=¡^14 x^2 +2x¡ 3
3 For each of the following quadratics:
i write the quadratic in factored form and hence find the roots
ii write the quadratic in completed square form and hence find the coordinates of the vertex
iii sketch the quadratic, showing the details you have found.
a y=x^2 ¡ 10 x+16 b y=x^2 +10x+9 c y=x^2 ¡ 14 x+45
4 Sketch the graph of:
a y=

̄
̄x^2 +4x¡ 12
̄
̄ b f(x)=
̄
̄¡x^2 ¡ 3 x+10
̄
̄ c y=
̄
̄ 4 x^2 ¡ 12 x+5
̄
̄

Example 18 Self Tutor


Find the range of y=x^2 ¡ 6 x¡ 2 on the domain ¡ 26 x 67.

y=x^2 ¡ 6 x¡ 2 has a=1, b=¡ 6 , and c=¡ 2.

a> 0 , so the shape is
¡b
2 a
=
¡(¡6)
2(1)
=3

When x=3, y=3^2 ¡6(3)¡ 2
=¡ 11
) the vertex is (3,¡11).

When x=¡ 2 , y=(¡2)^2 ¡6(¡2)¡ 2
=14
When x=7, y=7^2 ¡6(7)¡ 2
=5
So, on the domain fx:¡ 26 x 67 g,
the range is fy:¡ 116 y 614 g.

5 Find the range of:
a f(x)=x^2 +4x¡ 6 on ¡ 66 x 63 b y=¡x^2 +8x+3 on 06 x 67
c y=2x^2 ¡ 12 x+5 on ¡ 26 x 66 d f(x)=7x¡x^2 on ¡ 16 x 65

Activity #endboxedheading


Click on the icon to run a card game for quadratic functions. CARD GAME

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_03\084CamAdd_03.cdr Tuesday, 8 April 2014 10:27:10 AM BRIAN

Free download pdf