Fundamentals of Probability and Statistics for Engineers

(John Hannent) #1

In order to conform with conditions stated in this section, we augment Equa-
tion (5.78) by some simple transformation such as


The random variables Y and Z now play the role of Y 1 and Y 2 in Equation
(5.67) and we have


where


Using specific forms of fX 1 (x 1 )andfX 2 (x 2 ) given in Example (5.11), Equation
(5.80) becomes


Finally, pdf fY (y) is found by performing integration of Equation (5.81) with
respect to z:


This result agrees with that given in Equation (5.47) in Example 5.11.


Reference


Courant, R., 1937, Differential and Integral Calculus, Volume II, Wiley-Interscience,
New York.


Functions of Random Variables 153


ZˆX 2 : … 5 : 79 †

fYZ…y;z†ˆfX 1 X 2 ‰g^11 …y;z†;g^21 …y;z†ŠjJj;… 5 : 80 †

g^11 …y;z†ˆ
y
z;
g^21 …y;z†ˆz;


1

z^

y
z^2
01

(^)
(^)
ˆ^1 z:
fYZ…y;z†ˆfX 1
y
z




fX 2 …z†

1

z

ˆ

2 y
z



2
z
2 z



;

ˆ

y… 2

z^2

; for 0y 2 ;andyz 2 ;

ˆ 0 ; elsewhere:

… 5 : 81 †

fY…y†ˆ

Z 1


1

fYZ…y;z†dzˆ

Z 2

y

y… 2

z^2



dz;

ˆ 2 ‡y…lny 
1
ln 2†; for 0y 2 ;
ˆ 0 ; elsewhere:
Free download pdf