In order to conform with conditions stated in this section, we augment Equa-
tion (5.78) by some simple transformation such as
The random variables Y and Z now play the role of Y 1 and Y 2 in Equation
(5.67) and we have
where
Using specific forms of fX 1 (x 1 )andfX 2 (x 2 ) given in Example (5.11), Equation
(5.80) becomes
Finally, pdf fY (y) is found by performing integration of Equation (5.81) with
respect to z:
This result agrees with that given in Equation (5.47) in Example 5.11.
Reference
Courant, R., 1937, Differential and Integral Calculus, Volume II, Wiley-Interscience,
New York.
Functions of Random Variables 153
ZX 2 : 5 : 79
fYZ
y;zfX 1 X 2 g^11
y;z;g^21
y;zjJj;
5 : 80
g^11
y;z
y
z;
g^21
y;zz;
J
1
z^
y
z^2
01
(^)
(^)
^1 z:
fYZ
y;zfX 1
y
z
fX 2
z
1
z
2 y
z
2
z
2 z
;
y
2
z
z^2
; for 0y 2 ;andyz 2 ;
0 ; elsewhere:
5 : 81
fY
y
Z 1
1
fYZ
y;zdz
Z 2
y
y
2
z
z^2
dz;
2 y
lny
1
ln 2; for 0y 2 ;
0 ; elsewhere: