Equation (5.68) now applies and we have
where
On substituting Equations (5.75) and (5.76) into Equation (5.74), we have
We note that the result can again be expressed as the product of fY 1 (y 1 )and
fY 2 (y 2 ), with
Thus random variables Y 1 and Y 2 are again independent in this case where Y 1
has the so -called Raleigh distribution and Y 2 is Cauchy distributed. We remark
that the factor (1/ ) is assigned to fY 2 (y 2 ) to make the area under each pdf
equal to 1.
Ex ample 5. 20. Let us determine the pdf of Y considered in Example 5.11 by
using the formulae developed in this section. The transformation is
152 Fundamentals of Probability and Statistics for Engineers
fY 1 Y 2
y 1 ;y 2 fXg^11
yjJ 1 jfXg^21
yjJ 2 j;
5 : 74
fX
xfX 1
x 1 fX 2
x 2
1
2
exp
x^21 x^22
2
; 5 : 75
J 1 J 2
qg^111
qy 1
qg^111
qy 2
qg^121
qy 1
qg^121
qy 2
y 1
1 y^22
: 5 : 76
fY 1 Y 2 y 1 ;y 2
y 1
1 y^22
2
2
exp
y^21 y^22 y^21
2
1 y^22
;
y 1
1 y^22
exp
y^21
2
; fory 1 0 ;and
1 <y 2 < 1 ;
0 ; elsewhere:
5 : 77
fY 1
y 1
y 1 exp
y^21
2
; fory 1 0 ;
0 ; elsewhere;
8
><
>:
fY 2
y 2
1
1 y^22
; for
1 <y 2 < 1 :