Fundamentals of Probability and Statistics for Engineers

(John Hannent) #1

Equation (5.68) now applies and we have


where


On substituting Equations (5.75) and (5.76) into Equation (5.74), we have


We note that the result can again be expressed as the product of fY 1 (y 1 )and
fY 2 (y 2 ), with


Thus random variables Y 1 and Y 2 are again independent in this case where Y 1
has the so -called Raleigh distribution and Y 2 is Cauchy distributed. We remark
that the factor (1/ ) is assigned to fY 2 (y 2 ) to make the area under each pdf
equal to 1.


Ex ample 5. 20. Let us determine the pdf of Y considered in Example 5.11 by
using the formulae developed in this section. The transformation is


152 Fundamentals of Probability and Statistics for Engineers


fY 1 Y 2 …y 1 ;y 2 †ˆfX‰g^11 …y†ŠjJ 1 j‡fX‰g^21 …y†ŠjJ 2 j; … 5 : 74 †

fX…x†ˆfX 1 …x 1 †fX 2 …x 2 †ˆ

1

2 

exp

x^21 ‡x^22
2



; … 5 : 75 †

J 1 ˆJ 2 ˆ

qg^111
qy 1

qg^111
qy 2
qg^121
qy 1

qg^121
qy 2

ˆ

y 1
1 ‡y^22

: … 5 : 76 †

fY 1 Y 2 …y 1 ;y 2 †ˆ


y 1
1 ‡y^22



2

2 

exp

y^21 y^22 ‡y^21
2 … 1 ‡y^22 †



;

ˆ

y 1
… 1 ‡y^22 †

exp
y^21
2



; fory 1  0 ;and 
1 <y 2 < 1 ;

ˆ 0 ; elsewhere: … 5 : 77 †

fY 1 …y 1 †ˆ

y 1 exp
y^21
2



; fory 1  0 ;

0 ; elsewhere;

8

><

>:

fY 2 …y 2 †ˆ

1

… 1 ‡y^22 †

; for 
1 <y 2 < 1 :



YˆX 1 X 2 : … 5 : 78 †
Free download pdf