48 Algebra (Expansion and factorisation) (Chapter 1)
Some expressions with four terms do not have an overall common factor, but can be factorised by pairing
the four terms.
For example, ab| +{zac}+bd| +{zcd}
=a(b+c)+d(b+c) ffactorising each pair separatelyg
=(b+c)(a+d) fremoving the common factor(b+c)g
Note:
² Many expressions with four terms cannot be factorised using this method.
² Sometimes it is necessary to reorder the terms first.
Example 28 Self Tutor
Factorise: a 3 ab+d+3ad+b b x^2 +2x+5x+10
a 3 ab+d+3ad+b
=3ab+b
| {z }
+3ad+d
| {z }
=b(3a+1)+d(3a+1)
=(3a+1)(b+d)
b x|^2 {z+2x}+5|x{z+10}
=x(x+2)+5(x+2)
=(x+2)(x+5)
Example 29 Self Tutor
Factorise: a x^2 +3x¡ 4 x¡ 12 b x^2 +3x¡x¡ 3
a x|^2 +3{z x}¡| 4 x{z¡ (^12) }
=x(x+3)¡ 4 (x+3)
=(x+3)(x¡4)
b x|^2 {z+3x}¡| x{z¡ (^3) }
=x(x+3)¡(x+3)
=x(x+3)¡1(x+3)
=(x+3)(x¡1)
EXERCISE 1J
1 Factorise:
a 2 a+2+ab+b b 4 d+ac+ad+4c c ab+6+2b+3a
d mn+3p+np+3m e x^2 +3x+7x+21 f x^2 +5x+4x+20
g 2 x^2 +x+6x+3 h 3 x^2 +2x+12x+8 i 20 x^2 +12x+5x+3
2 Factorise:
a x^2 ¡ 4 x+5x¡ 20 b x^2 ¡ 7 x+2x¡ 14 c x^2 ¡ 3 x¡ 2 x+6
d x^2 ¡ 5 x¡ 3 x+15 e x^2 +7x¡ 8 x¡ 56 f 2 x^2 +x¡ 6 x¡ 3
g 3 x^2 +2x¡ 12 x¡ 8 h 4 x^2 ¡ 3 x¡ 8 x+6 i 9 x^2 +2x¡ 9 x¡ 2
J EXPRESSIONS WITH FOUR TERMS [2.8]
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\048IGCSE01_01.CDR Wednesday, 10 September 2008 2:08:09 PM PETER