Algebra (Equations and inequalities) (Chapter 3) 81Example 8 Self Tutor
Solve forx:2 x+3
4=
x¡ 2
32 x+3
4=
x¡ 2
3fLCD=12g)
3 £( 2 x+3)
3 £ 4=
4 £(x¡ 2 )
4 £ 3
fto achieve a common denominatorg) 3(2x+3)=4(x¡2) fequating numeratorsg
) 6 x+9=4x¡ 8 fexpanding bracketsg
) 6 x+9¡ 4 x=4x¡ 8 ¡ 4 x fsubtracting 4 xfrom both sidesg
) 2 x+9=¡ 8
) 2 x+9¡ 9 =¡ 8 ¡ 9 fsubtracting 9 from both sidesg
) 2 x=¡ 17) fdividing both sides by 2 g2 x
2=¡
17
2
) x=¡ (^812)
Example 9 Self Tutor
Solve forx:
x
3
¡
1 ¡ 2 x
6=¡ 4
x
3¡
1 ¡ 2 x
6=¡ 4 fLCD=6g)
x
3£
2
2
¡
μ
1 ¡ 2 x
6¶
=¡ 4 £6
6
fto create a common denominatorg) 2 x¡(1¡ 2 x)=¡ 24 fequating numeratorsg
) 2 x¡1+2x=¡ 24 fexpandingg
) 4 x¡1=¡ 24
) 4 x¡ 1 +1=¡ 24 +1 fadding 1 to both sidesg
) 4 x=¡ 23) x=¡^234 fdividing both sides by 4 gUNKNOWN IN THE DENOMINATOR
If the unknown appears as part of the denominator, we still solve by:
² writing the equations with thelowest common denominator (LCD)and then
² equating numerators.IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_03\081IGCSE01_03.CDR Monday, 15 September 2008 10:40:07 AM PETER