Cambridge International Mathematics

(Tina Sui) #1
Algebra (Equations and inequalities) (Chapter 3) 81

Example 8 Self Tutor


Solve forx:

2 x+3
4

=

x¡ 2
3

2 x+3
4

=

x¡ 2
3

fLCD=12g

)

3 £( 2 x+3)
3 £ 4

=

4 £(x¡ 2 )
4 £ 3
fto achieve a common denominatorg

) 3(2x+3)=4(x¡2) fequating numeratorsg
) 6 x+9=4x¡ 8 fexpanding bracketsg
) 6 x+9¡ 4 x=4x¡ 8 ¡ 4 x fsubtracting 4 xfrom both sidesg
) 2 x+9=¡ 8
) 2 x+9¡ 9 =¡ 8 ¡ 9 fsubtracting 9 from both sidesg
) 2 x=¡ 17

) fdividing both sides by 2 g

2 x
2


17

2

) x=¡ (^812)
Example 9 Self Tutor
Solve forx:
x
3


¡

1 ¡ 2 x
6

=¡ 4

x
3

¡

1 ¡ 2 x
6

=¡ 4 fLCD=6g

)

x
3

£

2

2

¡

μ
1 ¡ 2 x
6


=¡ 4 £

6

6

fto create a common denominatorg

) 2 x¡(1¡ 2 x)=¡ 24 fequating numeratorsg
) 2 x¡1+2x=¡ 24 fexpandingg
) 4 x¡1=¡ 24
) 4 x¡ 1 +1=¡ 24 +1 fadding 1 to both sidesg
) 4 x=¡ 23

) x=¡^234 fdividing both sides by 4 g

UNKNOWN IN THE DENOMINATOR


If the unknown appears as part of the denominator, we still solve by:
² writing the equations with thelowest common denominator (LCD)and then
² equating numerators.

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_03\081IGCSE01_03.CDR Monday, 15 September 2008 10:40:07 AM PETER

Free download pdf