Coordinate geometry (Chapter 12) 259
EXERCISE 12B.1
1
a A and B b A and D c C and A
d F and C e G and F f C and G
g E and C h E and D i B and G.
2
a A(3,5)and B(2,6) b P(2,4)and Q(¡ 3 ,2) c R(0,6)and S(3,0)
d L(2,¡7)and M(1,¡2) e C(0,5)and D(¡ 4 ,0) f A(5,1)and B(¡ 1 ,¡1)
g P(¡ 2 ,3)and Q(3,¡2) h R(3,¡4)and S(¡ 1 ,¡3) i X(4,¡1)and Y(3,¡3)
THE DISTANCE FORMULA
To avoid drawing a diagram each time we wish to find a distance, a
distance formulacan be developed.
In going from A to B, the x-step =x 2 ¡x 1 , and
the y-step =y 2 ¡y 1.
Now, using Pythagoras’ theorem,
(AB)^2 =(x-step)^2 +(y-step)^2
) AB=
p
(x-step)^2 +(y-step)^2
) d=
q
(x 2 ¡x 1 )^2 +(y 2 ¡y 1 )^2.
Example 4 Self Tutor
Find the distance between A(¡ 2 ,1)and B(3,4).
A(¡ 2 ,1) B(3,4)
x 1 y 1 x 2 y 2
AB=
p
(3¡¡2)^2 +(4¡1)^2
=
p
52 +3^2
=
p
25 + 9
=
p
34 units
The distance formula saves
us having to graph the points
each time we want to find a
distance. However, you can
still use a sketch and
Pythagoras if you need.
y
x
d
x 1
y 1
x 2
y 2
A( , )xy 11
B( , )xy 22
x-step
y-step
O
If A(x 1 ,y 1 ) and B(x 2 ,y 2 ) are two points in a plane, then the
AB=
p
(x 2 ¡x 1 )^2 +(y 2 ¡y 1 )^2
or d=
p
(x-step)^2 +(y-step)^2.
distance between these points is given by:
y
x
G
F
E
A
C
B
D
O
If necessary, use Pythagoras’ theorem to find the
distance between:
Plot the following pairs of points and use Pythagoras’ theorem to find the distances between them.
Give your answers correct to 3 significant figures:
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_12\259IGCSE01_12.CDR Thursday, 2 October 2008 12:44:32 PM PETER