260 Coordinate geometry (Chapter 12)
Example 5 Self Tutor
Consider the points A(¡ 2 ,0),B(2,1)and C(1,¡3).
Determine if the triangle ABC is equilateral, isosceles or scalene.
AB=
p
(2¡¡2)^2 +(1¡0)^2
=
p
42 +1^2
=
p
17 units
AC=
p
(1¡¡2)^2 +(¡ 3 ¡0)^2
=
p
32 +(¡3)^2
=
p
18 units
BC=
p
(1¡2)^2 +(¡ 3 ¡1)^2
=
p
(¡1)^2 +(¡4)^2
=
p
17 units
As AB=BC, triangle
ABC is isosceles.
Example 6 Self Tutor
Use the distance formula to show that triangle ABC is right angled
if A is(1,2),Bis(2,5), and C is(4,1).
AB=
p
(2¡1)^2 +(5¡2)^2
=
p
12 +3^2
=
p
10 units
AC=
p
(4¡1)^2 +(1¡2)^2
=
p
32 +(¡1)^2
=
p
10 units
BC=
p
(4¡2)^2 +(1¡5)^2
=
p
22 +(¡4)^2
=
p
20 units
So, AB^2 +AC^2 = 10 + 10 = 20
and BC^2 =20
) triangle ABC is right angled at A:
Example 7 Self Tutor
Findbgiven that A( 3 ,¡ 2 ) and B(b, 1 ) are
p
13 units apart.
From A to B, x-step=b¡ 3
y-step=1¡¡2=3
)
p
(b¡3)^2 +3^2 =
p
13
) (b¡3)^2 +9=13
) (b¡3)^2 =4
) b¡3=§ 2
) b=3§ 2
) b=5or 1 :
A,()-2 ¡0
B,()2 ¡1
C,()1 -3
~` 1 ` 0
~` 1 ` 0
~` 2 ` 0
A
B
C
The right angle
is opposite the
longest side.
There are two
possible solutions in
this example. Draw
a diagram to see
why this is so.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_12\260IGCSE01_12.CDR Thursday, 2 October 2008 12:43:39 PM PETER