Cambridge International Mathematics

(Tina Sui) #1
260 Coordinate geometry (Chapter 12)

Example 5 Self Tutor


Consider the points A(¡ 2 ,0),B(2,1)and C(1,¡3).
Determine if the triangle ABC is equilateral, isosceles or scalene.

AB=

p
(2¡¡2)^2 +(1¡0)^2
=

p
42 +1^2
=

p
17 units

AC=

p
(1¡¡2)^2 +(¡ 3 ¡0)^2
=

p
32 +(¡3)^2
=

p
18 units

BC=

p
(1¡2)^2 +(¡ 3 ¡1)^2
=

p
(¡1)^2 +(¡4)^2
=

p
17 units

As AB=BC, triangle
ABC is isosceles.

Example 6 Self Tutor


Use the distance formula to show that triangle ABC is right angled
if A is(1,2),Bis(2,5), and C is(4,1).

AB=

p
(2¡1)^2 +(5¡2)^2
=

p
12 +3^2
=

p
10 units

AC=

p
(4¡1)^2 +(1¡2)^2
=

p
32 +(¡1)^2
=

p
10 units

BC=

p
(4¡2)^2 +(1¡5)^2
=

p
22 +(¡4)^2
=

p
20 units

So, AB^2 +AC^2 = 10 + 10 = 20
and BC^2 =20

) triangle ABC is right angled at A:

Example 7 Self Tutor


Findbgiven that A( 3 ,¡ 2 ) and B(b, 1 ) are

p
13 units apart.

From A to B, x-step=b¡ 3
y-step=1¡¡2=3

)

p
(b¡3)^2 +3^2 =

p
13
) (b¡3)^2 +9=13
) (b¡3)^2 =4
) b¡3=§ 2
) b=3§ 2
) b=5or 1 :

A,()-2 ¡0

B,()2 ¡1

C,()1 -3

~` 1 ` 0
~` 1 ` 0

~` 2 ` 0

A

B
C

The right angle
is opposite the
longest side.

There are two
possible solutions in
this example. Draw
a diagram to see
why this is so.

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_12\260IGCSE01_12.CDR Thursday, 2 October 2008 12:43:39 PM PETER

Free download pdf