Coordinate geometry (Chapter 12) 259EXERCISE 12B.1
1a A and B b A and D c C and A
d F and C e G and F f C and G
g E and C h E and D i B and G.2
a A(3,5)and B(2,6) b P(2,4)and Q(¡ 3 ,2) c R(0,6)and S(3,0)
d L(2,¡7)and M(1,¡2) e C(0,5)and D(¡ 4 ,0) f A(5,1)and B(¡ 1 ,¡1)
g P(¡ 2 ,3)and Q(3,¡2) h R(3,¡4)and S(¡ 1 ,¡3) i X(4,¡1)and Y(3,¡3)THE DISTANCE FORMULA
To avoid drawing a diagram each time we wish to find a distance, a
distance formulacan be developed.In going from A to B, the x-step =x 2 ¡x 1 , and
the y-step =y 2 ¡y 1.Now, using Pythagoras’ theorem,(AB)^2 =(x-step)^2 +(y-step)^2) AB=p
(x-step)^2 +(y-step)^2) d=q
(x 2 ¡x 1 )^2 +(y 2 ¡y 1 )^2.Example 4 Self Tutor
Find the distance between A(¡ 2 ,1)and B(3,4).A(¡ 2 ,1) B(3,4)
x 1 y 1 x 2 y 2AB=
p
(3¡¡2)^2 +(4¡1)^2
=p
52 +3^2
=p
25 + 9
=p
34 unitsThe distance formula saves
us having to graph the points
each time we want to find a
distance. However, you can
still use a sketch and
Pythagoras if you need.yxdx 1y 1x 2y 2A( , )xy 11B( , )xy 22x-stepy-stepOIf A(x 1 ,y 1 ) and B(x 2 ,y 2 ) are two points in a plane, then theAB=
p
(x 2 ¡x 1 )^2 +(y 2 ¡y 1 )^2or d=p
(x-step)^2 +(y-step)^2.distance between these points is given by:yxGFEACBDOIf necessary, use Pythagoras’ theorem to find the
distance between:Plot the following pairs of points and use Pythagoras’ theorem to find the distances between them.
Give your answers correct to 3 significant figures:IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_12\259IGCSE01_12.CDR Thursday, 2 October 2008 12:44:32 PM PETER