Coordinate geometry (Chapter 12) 265
THE GRADIENT FORMULA
If A is(x 1 ,y 1 )and B is(x 2 ,y 2 )then thegradientof
AB is
y 2 ¡y 1
x 2 ¡x 1
:
Example 12 Self Tutor
Find the gradient of the line through(3,¡2)and(6,4).
(3,¡2) (6,4)
x 1 y 1 x 2 y 2
gradient =
y 2 ¡y 1
x 2 ¡x 1
=
4 ¡¡ 2
6 ¡ 3
=^63
=2
Example 13 Self Tutor
Through(2,4)draw a line with gradient¡^23.
Plot the point(2,4)
gradient=
y-step
x-step
=
¡ 2
3
) lety-step=¡ 2 ,x-step=3.
Use these steps to find another
point and draw the line through
these points.
EXERCISE 12D.1
1 Find the gradient of
each line segment:
2 On grid paper draw a line segment with gradient:
a^34 b ¡^12 c 2 d ¡ 3 e 0 f ¡^25
y
x
y 1
x 1
y 2
x 2
A
B
yy 21 -
xx 21 -
O
y
x
()2 ¡4,
2
2
4
4
3
3
- 2
- 2
b
f
c
g
d
h
a
e
It is a good
idea to use
a positive
x-step.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_12\265IGCSE01_12.CDR Thursday, 25 September 2008 11:19:48 AM PETER