Algebraic fractions (Chapter 16) 341Example 2 Self Tutor
Simplify: a(x+ 3)(x¡2)
4(x+3)b2(x+3)^2
x+3a(x+ 3)(x¡2)
4(x+3)=
x¡ 2
4b2(x+3)^2
x+3=2(x+ 3)(x+3)
(x+3)=2(x+3)EXERCISE 16A.1
1 Simplify if possible:a6 a
3b10 b
5c3
6 xd8 t
tet+2
tf8 a^2
4 ag2 b
4 b^2h2 x^2
x^2i4 a
12 a^3j4 x^2
8 xkt^2 +8
t
la^2 b
ab^2
ma+b
a¡c
n15 x^2 y^3
3 xy^4
o8 abc^2
4 bcp(2a)^2
aq(2a)^2
4 a^2r(3a^2 )^2
3 as(3a^2 )^2
9 a^2t(3a^2 )^2
18 a^3
2 Split the following expressions into two parts and simplify if possible.For example,x+9
x=
x
x+
9
x=1+
9
x:
ax+3
3b4 a+1
2ca+b
cda+2b
be2 a+4
2
f3 a+6b
3
g4 m+8n
4
h4 m+8n
2 m
3 Which of the expressions in 2 could be simplified and which could not? Explain why this is so.
4 Simplify:a
3(x+2)
3b
4(x¡1)
2c
7(b+2)
14d2(n+5)
12
e10
5(x+2)
f15
5(3¡a)g6(x+2)
(x+2)hx¡ 4
2(x¡4)i2(x+2)
x(x+2)j
x(x¡5)^2
3(x¡5)k
(x+ 2)(x+3)
2(x+2)^2l
(x+ 2)(x+5)
5(x+5)m(x+ 2)(x¡1)
(x¡1)(x+3)
n(x+ 5)(2x¡1)
3(2x¡1)
o(x+6)^2
3(x+6)px^2 (x+2)
x(x+ 2)(x¡1)q(x+2)^2 (x+1)
4(x+2)r(x+2)^2 (x¡1)^2
(x¡1)^2 x^2In these examples
is the
common factor.(+3)x1(^11)
1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\341IGCSE01_16.CDR Thursday, 2 October 2008 1:43:42 PM PETER