Cambridge International Mathematics

(Tina Sui) #1
342 Algebraic fractions (Chapter 16)

FACTORISATION AND SIMPLIFICATION


It is often necessary to factorise either the numerator or denominator before simplification can be done.

Example 3 Self Tutor


Simplify: a

4 a+8
4

b

3

3 a¡ 6 b

a

4 a+8
4

=
4(a+2)
4

=
(a+2)
1
=a+2

b

3

3 a¡ 6 b

=

3

3(a¡ 2 b)

=

1

a¡ 2 b

Example 4 Self Tutor


Simplify: a

ab¡ac
b¡c
b

2 x^2 ¡ 4 x
4 x¡ 8

a
ab¡ac
b¡c

=
a(b¡c)
b¡c
=

a
1
=a

b
2 x^2 ¡ 4 x
4 x¡ 8

=
2 x(x¡2)
4(x¡2)

=

x
2

It is sometimes useful to use the property: b¡a=¡1(a¡b)

Example 5 Self Tutor


Simplify: a

3 a¡ 3 b
b¡a

b

ab^2 ¡ab
1 ¡b

a

3 a¡ 3 b
b¡a

=
3(a¡b)
¡1(a¡b)
=¡ 3

b

ab^2 ¡ab
1 ¡b

=
ab(b¡1)
¡1(b¡1)
=¡ab

1

1

1

1

1
1

1
1

1
1

1
1

1

2

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\342IGCSE01_16.CDR Thursday, 2 October 2008 2:15:32 PM PETER

Free download pdf