Cambridge International Mathematics

(Tina Sui) #1
Algebraic fractions (Chapter 16) 351

b

¡ 3

(x+ 2)(x¡1)

+

x
x¡ 1

=

¡ 3

(x+ 2)(x¡1)

+

³ x
x¡ 1

́μx+2
x+2


fLCD=(x+ 2)(x¡1)g

=

¡3+x(x+2)
(x+ 2)(x¡1)

=

x^2 +2x¡ 3
(x+ 2)(x¡1)

=

(x+ 3)(x¡1)
(x+ 2)(x¡1)

=

x+3
x+2

EXERCISE 16D.2
1 Write as a single fraction:

a

2

x(x+1)

+

1

x+1

b

2

x(x+1)

+

x
x+1

c

2 x
x¡ 3

+

4

(x+ 2)(x¡3)

d
2 x
x¡ 3

¡

30

(x+ 2)(x¡3)

e

3

(x¡2)(x+3)

+

x
x+3

f
x
x+3

¡

15

(x¡2)(x+3)

g

2 x
x+4

¡

40

(x¡1)(x+4)

h

x+5
x¡ 2

¡

63

(x¡2)(x+7)

2aWrite

2

(x+ 2)(x¡3)

+

2 x
x¡ 3

as a single fraction.

b Hence, find the values ofxwhen this expression is: i undefined ii zero.

3 Simplify: a

x
x¡ 2 ¡^3
x¡ 3

b

3 x
x+4¡^1
x¡ 2

c

x^2
x+2¡^1
x+1

d

x^2
2 ¡x+9
x¡ 3

e

1
x^2 ¡

1
4
x¡ 2

f

x¡ 3
x^2 ¡

1
16
x¡ 4

4aSimplify:

2
x+1¡

x
3
2 ¡x
b Hence, find the values ofxwhen this expression is: i undefined ii zero.

Review set 16A
#endboxedheading
1 Simplify:

a

6 x^2
2 x

b 6 £

n
2

c

x
2

¥ 3 d

8 x
(2x)^2

2 Simplify, if possible:

a

8

4(c+3)

b

3 x+8
4

c

4 x+8
4

d

x(x+1)
3(x+ 1)(x+2)

The expression is zero when

. The expression is
undefined when
and also when We
can see this from the
original expression.


x
x
x:

=3
=2
=1

¡
¡
1
1

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\351IGCSE01_16.CDR Thursday, 2 October 2008 2:12:39 PM PETER

Free download pdf