Algebraic fractions (Chapter 16) 351b¡ 3
(x+ 2)(x¡1)+
x
x¡ 1=¡ 3
(x+ 2)(x¡1)+
³ x
x¡ 1́μx+2
x+2¶
fLCD=(x+ 2)(x¡1)g=
¡3+x(x+2)
(x+ 2)(x¡1)=x^2 +2x¡ 3
(x+ 2)(x¡1)=(x+ 3)(x¡1)
(x+ 2)(x¡1)=x+3
x+2EXERCISE 16D.2
1 Write as a single fraction:a2
x(x+1)+
1
x+1b2
x(x+1)+
x
x+1c2 x
x¡ 3+
4
(x+ 2)(x¡3)d
2 x
x¡ 3¡
30
(x+ 2)(x¡3)e3
(x¡2)(x+3)+
x
x+3f
x
x+3¡
15
(x¡2)(x+3)g2 x
x+4¡
40
(x¡1)(x+4)hx+5
x¡ 2¡
63
(x¡2)(x+7)2aWrite2
(x+ 2)(x¡3)+
2 x
x¡ 3as a single fraction.b Hence, find the values ofxwhen this expression is: i undefined ii zero.3 Simplify: ax
x¡ 2 ¡^3
x¡ 3b3 x
x+4¡^1
x¡ 2cx^2
x+2¡^1
x+1dx^2
2 ¡x+9
x¡ 3e1
x^2 ¡1
4
x¡ 2fx¡ 3
x^2 ¡1
16
x¡ 44aSimplify:2
x+1¡x
3
2 ¡x
b Hence, find the values ofxwhen this expression is: i undefined ii zero.Review set 16A
#endboxedheading
1 Simplify:a6 x^2
2 xb 6 £n
2cx
2¥ 3 d8 x
(2x)^22 Simplify, if possible:a8
4(c+3)b3 x+8
4c4 x+8
4dx(x+1)
3(x+ 1)(x+2)The expression is zero when. The expression is
undefined when
and also when We
can see this from the
original expression.
x
x
x:=3
=2
=1¡
¡
1
1IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\351IGCSE01_16.CDR Thursday, 2 October 2008 2:12:39 PM PETER