350 Algebraic fractions (Chapter 16)
2 Write as a single fraction:
a
2
x+1
+
3
x¡ 2
b
5
x+1
+
7
x+2
c
5
x¡ 1
¡
4
x+2
d
2
x+2
¡
4
2 x+1
e
3
x¡ 1
+
4
x+4
f
7
1 ¡x
¡
8
x+2
g
1
x+1
+
3
x
h
5
x
¡
2
x+3
i
x
x+2
+
3
x¡ 4
j 2+
4
x¡ 3
k
3 x
x+2
¡ 1 l
x
x+3
+
x¡ 1
x+2
m
2
2 x¡ 1
¡
1
x+3
n
7
x
¡
4
3 x¡ 1
o
x
x+2
¡
x+1
x¡ 2
p
2
x(x+1)
+
1
x+1
q
1
x¡ 1
¡
1
x
+
1
x+1
r
2
x+1
¡
1
x¡ 1
+
3
x+2
s
x
x¡ 1
¡
1
x
+
x
x+1
3 Simplify:
a
3 x¡ 9
6
£
12
x^2 ¡ 9
b
5 x¡ 20
2 x
¥
2 x¡ 8
x
c
2 x+8
5
£
10
x^2 ¡ 16
d
e
x^2 +x¡ 2
x^2 ¡ 4
£
x^2 +3x¡ 10
x^2 +7x+10
f
x^2 ¡ 4
x^2 +3x
¥
x^2 +7x+10
x^2 +8x+15
gh
4 x^2 ¡ 9
x^2 +4x¡ 5
¥
2 x^2 ¡ 3 x
x^2 +5x
4 Answer theOpening Problemon page 339.
PROPERTIES OF ALGEBRAIC FRACTIONS
Writing expressions as a single fraction can help us to find when the expression is zero.
However, we need to be careful when we cancel common factors, as we can sometimes lose values when
an expression is undefined.
Example 15 Self Tutor
Write as a single fraction: a
3
(x+ 2)(x¡1)
+
x
x¡ 1
b
¡ 3
(x+ 2)(x¡1)
+
x
x¡ 1
a
3
(x+ 2)(x¡1)
+
x
x¡ 1
=
3
(x+ 2)(x¡1)
+
³ x
x¡ 1
́μx+2
x+2
¶
fLCD=(x+ 2)(x¡1)g
=
3+x(x+2)
(x+ 2)(x¡1)
=
x^2 +2x+3
(x+ 2)(x¡1)
which we cannot simplify further.
x^2 ¡x¡ 2
x+1
¥
x¡ 2
5
2 x^2 ¡x¡ 3
6 x^2 +x¡ 15
£
4 x^2 ¡ 7 x+3
4 x^2 +x¡ 3
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_16\350IGCSE01_16.CDR Tuesday, 7 October 2008 2:02:55 PM PETER