Cambridge International Mathematics

(Tina Sui) #1
350 Algebraic fractions (Chapter 16)

2 Write as a single fraction:

a

2

x+1

+

3

x¡ 2

b

5

x+1

+

7

x+2

c

5

x¡ 1

¡

4

x+2

d

2

x+2

¡

4

2 x+1

e

3

x¡ 1

+

4

x+4

f

7

1 ¡x

¡

8

x+2

g

1

x+1

+

3

x
h

5

x

¡

2

x+3
i

x
x+2

+

3

x¡ 4

j 2+

4

x¡ 3
k

3 x
x+2
¡ 1 l

x
x+3

+

x¡ 1
x+2

m

2

2 x¡ 1

¡

1

x+3

n

7

x

¡

4

3 x¡ 1

o
x
x+2

¡

x+1
x¡ 2

p

2

x(x+1)

+

1

x+1

q

1

x¡ 1

¡

1

x

+

1

x+1

r

2

x+1

¡

1

x¡ 1

+

3

x+2

s

x
x¡ 1

¡

1

x

+

x
x+1
3 Simplify:

a
3 x¡ 9
6

£

12

x^2 ¡ 9

b
5 x¡ 20
2 x

¥

2 x¡ 8
x

c

2 x+8
5

£

10

x^2 ¡ 16

d

e
x^2 +x¡ 2
x^2 ¡ 4

£

x^2 +3x¡ 10
x^2 +7x+10

f
x^2 ¡ 4
x^2 +3x

¥

x^2 +7x+10
x^2 +8x+15

gh

4 x^2 ¡ 9
x^2 +4x¡ 5

¥

2 x^2 ¡ 3 x
x^2 +5x
4 Answer theOpening Problemon page 339.

PROPERTIES OF ALGEBRAIC FRACTIONS


Writing expressions as a single fraction can help us to find when the expression is zero.
However, we need to be careful when we cancel common factors, as we can sometimes lose values when
an expression is undefined.

Example 15 Self Tutor


Write as a single fraction: a

3

(x+ 2)(x¡1)

+

x
x¡ 1

b

¡ 3

(x+ 2)(x¡1)

+

x
x¡ 1

a

3

(x+ 2)(x¡1)

+

x
x¡ 1

=

3

(x+ 2)(x¡1)

+

³ x
x¡ 1

́μx+2
x+2


fLCD=(x+ 2)(x¡1)g

=

3+x(x+2)
(x+ 2)(x¡1)

=

x^2 +2x+3
(x+ 2)(x¡1)

which we cannot simplify further.

x^2 ¡x¡ 2
x+1

¥

x¡ 2
5

2 x^2 ¡x¡ 3
6 x^2 +x¡ 15

£

4 x^2 ¡ 7 x+3
4 x^2 +x¡ 3

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_16\350IGCSE01_16.CDR Tuesday, 7 October 2008 2:02:55 PM PETER

Free download pdf