Cambridge International Mathematics

(Tina Sui) #1
Introduction to functions (Chapter 19) 397

EXERCISE 19F.1
1 Write down the values of:
a j 7 j b j¡ 7 j c j 0 : 93 j d

̄
̄¡ 21
4

̄
̄ e j¡ 0 : 0932 j

2 Ifx=¡ 4 , find the value of:
a jx+6j b jx¡ 6 j c j 2 x+3j d j 7 ¡xj

e jx¡ 7 j f

̄
̄x^2 ¡ 6 x
̄
̄ g
̄
̄ 6 x¡x^2
̄
̄ h jxj
x+2

3aFind the value ofa^2 andjaj^2 ifais:
i 3 ii 0 iii ¡ 2 iv 9 v ¡ 9 vi ¡ 20
b What do you conclude from the results ina?

4 Solve forx:
a jxj=4 b jxj=1: 4 c jxj=¡ 2 d jxj+1=7
e jx+1j=3 f j 2 ¡xj=5 g 5 ¡jxj=1 h j 5 ¡xj=1

a b jabj jajjbj

̄
̄
̄

a
b

̄
̄
̄

jaj
jbj
12 3
12 ¡ 3
¡ 12 3
¡ 12 ¡ 3

5aCopy and complete:
b What can you conclude from the results ina?

6 By replacingjxjwithxfor x> 0 and(¡x)for x< 0 , write the following functions without the
modulus sign and hence graph each function:

a y=¡jxj b y=jxj+x c y=

jxj
x
d y=x¡ 2 jxj

a b ja+bj jaj+jbj ja¡bj jaj¡jbj
2 5
2 ¡ 5
¡ 2 5
¡ 2 ¡ 5

7aCopy and complete:
b What can you conclude from the results
ina?

Example 8 Self Tutor


Draw the graph of f(x)=x+2jxj:

If x> 0 ,
f(x)=x+2(x)=3x
If x< 0 ,
f(x)=x+2(¡x)=¡x

y

x

yx¡=¡-

yx¡=¡3

O

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_19\397IGCSE01_19.CDR Friday, 10 October 2008 10:20:45 AM PETER

Free download pdf