Cambridge International Mathematics

(Tina Sui) #1
EXERCISE 21B.1
1 Solve for the unknown using the Null Factor law:
a 3 x=0 b a£8=0 c ¡ 7 y=0
d ab=0 e 2 xy=0 f abc=0
g a^2 =0 h pqrs=0 i a^2 b=0
2 Solve forxusing the Null Factor law:
a x(x¡5) = 0 b 2 x(x+3)=0 c (x+ 1)(x¡3) = 0
d 3 x(7¡x)=0 e ¡ 2 x(x+1)=0 f 4(x+ 6)(2x¡3) = 0
g (2x+ 1)(2x¡1) = 0 h 11(x+ 2)(x¡7) = 0 i ¡6(x¡5)(3x+2)=0
j x^2 =0 k 4(5¡x)^2 =0 l ¡3(3x¡1)^2 =0

STEPS FOR SOLVING QUADRATIC EQUATIONS


To use theNull Factorlaw when solving equations, we must have one side of the equationequal to zero.

Step 1: If necessary, rearrange the equation so one side iszero.
Step 2: Fully factorisethe other side (usually the LHS).
Step 3: Use theNull Factorlaw.
Step 4: Solvethe resulting linear equations.
Step 5: Checkat least one of your solutions.

Example 4 Self Tutor
If a£b=0
then either
a=0or
b=0.

Solve forx: x^2 =3x

x^2 =3x
) x^2 ¡ 3 x=0 frearranging so RHS=0g
) x(x¡3) = 0 ffactorising the LHSg
) x=0or x¡3=0 fNull Factor lawg
) x=0or x=3
) x=0or 3

ILLEGAL CANCELLING


Let us reconsider the equation x^2 =3x fromExample 4.
We notice that there is a common factor ofxon both sides.

If we cancelxfrom both sides, we will have

x^2
x

=

3 x
x

and thus x=3:

Consequently, we will ‘lose’ the solution x=0.
From this example we conclude that:

We must never cancel a variable that is a common factor from both sides of an
equation unless we know that the factor cannot be zero.

424 Quadratic equations and functions (Chapter 21)

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\424IGCSE01_21.CDR Monday, 27 October 2008 2:08:58 PM PETER

Free download pdf