Try as much as we like, we will not be able to solve quadratic
equations such asx^2 +4x¡7=0using the factorisation methods
already practised. This is because the solutions are not rationals.Not all
quadratics have
simple factors.Consequently, thequadratic formulahas been developed:If ax^2 +bx+c=0 where a 6 =0, then x=¡b§p
b^2 ¡ 4 ac
2 a.
Proof: If ax^2 +bx+c=0then x^2 +b
ax+c
a=0 fdividing each term bya,asa 6 =0g) x^2 +b
ax =¡c
a) x^2 +
b
ax+μ
b
2 a¶ 2
=¡
c
a+
μ
b
2 a¶ 2
fcompleting the square on LHSg)
μ
x+b
2 a¶ 2
=¡c
aμ
4 a
4 a¶
+b^2
4 a^2)
μ
x+
b
2 a¶ 2
=
b^2 ¡ 4 ac
4 a^2) x+b
2 a=§
r
b^2 ¡ 4 ac
4 a^2) x=¡
b
2 a§
p
b^2 ¡ 4 ac
2 a) x=
¡b§p
b^2 ¡ 4 ac
2 a
To demonstrate the validity of this formula, consider the equation x^2 ¡ 3 x+2=0.By factorisation: x^2 ¡ 3 x+2=0
) (x¡1)(x¡2) = 0
) x=1or 2By formula: a=1,b=¡ 3 ,c=2) x=¡(¡3)§
p
(¡3)^2 ¡4(1)(2)
2
) x=3 §
p
9 ¡ 8
2
) x=3 § 1
2
) x=2or 1We can see that factorisation is quicker if the quadratic can indeed be factorised, but the quadratic formula
provides an alternative for when it cannot be factorised.C THE QUADRATIC FORMULA [2.10]
Quadratic equations and functions (Chapter 21) 427IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\427IGCSE01_21.CDR Monday, 27 October 2008 2:09:07 PM PETER