Try as much as we like, we will not be able to solve quadratic
equations such asx^2 +4x¡7=0using the factorisation methods
already practised. This is because the solutions are not rationals.
Not all
quadratics have
simple factors.
Consequently, thequadratic formulahas been developed:
If ax^2 +bx+c=0 where a 6 =0, then x=
¡b§
p
b^2 ¡ 4 ac
2 a
.
Proof: If ax^2 +bx+c=0
then x^2 +
b
a
x+
c
a
=0 fdividing each term bya,asa 6 =0g
) x^2 +
b
a
x =¡
c
a
) x^2 +
b
a
x+
μ
b
2 a
¶ 2
=¡
c
a
+
μ
b
2 a
¶ 2
fcompleting the square on LHSg
)
μ
x+
b
2 a
¶ 2
=¡
c
a
μ
4 a
4 a
¶
+
b^2
4 a^2
)
μ
x+
b
2 a
¶ 2
=
b^2 ¡ 4 ac
4 a^2
) x+
b
2 a
=§
r
b^2 ¡ 4 ac
4 a^2
) x=¡
b
2 a
§
p
b^2 ¡ 4 ac
2 a
) x=
¡b§
p
b^2 ¡ 4 ac
2 a
To demonstrate the validity of this formula, consider the equation x^2 ¡ 3 x+2=0.
By factorisation: x^2 ¡ 3 x+2=0
) (x¡1)(x¡2) = 0
) x=1or 2
By formula: a=1,b=¡ 3 ,c=2
) x=
¡(¡3)§
p
(¡3)^2 ¡4(1)(2)
2
) x=
3 §
p
9 ¡ 8
2
) x=
3 § 1
2
) x=2or 1
We can see that factorisation is quicker if the quadratic can indeed be factorised, but the quadratic formula
provides an alternative for when it cannot be factorised.
C THE QUADRATIC FORMULA [2.10]
Quadratic equations and functions (Chapter 21) 427
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\427IGCSE01_21.CDR Monday, 27 October 2008 2:09:07 PM PETER