Cambridge International Mathematics

(Tina Sui) #1

USE OF THE QUADRATIC FORMULA


If b^2 ¡ 4 ac is a rational perfect square then

p
b^2 ¡ 4 ac will be rational, and so the solutions of the
quadratic will also be rational. In such instances, it is preferable to solve the quadratic by factorisation.

For example, 6 x^2 ¡ 13 x¡8=0has b^2 ¡ 4 ac= 169¡4(6)(¡8) = 361 = 19^2 , so we should solve this
equation by factorising 6 x^2 ¡ 13 x¡ 8 into (3x¡8) (2x+1).

Example 7 Self Tutor


Solve forx:
a x^2 ¡ 2 x¡2=0 b 2 x^2 +3x¡4=0

a x^2 ¡ 2 x¡2=0 has
a=1, b=¡ 2 , c=¡ 2

) x=

¡(¡2)§

p
(¡2)^2 ¡4(1)(¡2)
2(1)

) x=

2 §

p
4+8
2

) x=

2 §

p
12
2

) x=

2 § 2

p
3
2
) x=1§

p
3 fexact formg

b 2 x^2 +3x¡4=0 has
a=2, b=3, c=¡ 4

) x=

¡ 3 §

p
32 ¡4(2)(¡4)
2(2)

) x=

¡ 3 §

p
9+32
4

) x=

¡ 3 §

p
41
4
So, x¼ 0 : 85 or ¼¡ 2 : 35
fcorrect to 2 decimal placesg

EXERCISE 21C.1


1 Use the quadratic formula to solve forx, giving exact answers::
a x^2 +4x¡3=0 b x^2 +6x+1=0 c x^2 +4x¡7=0
d x^2 +2x=2 e x^2 +2=6x f x^2 =4x+1
g x^2 +1=3x h x^2 +8x+5=0 i 2 x^2 =2x+1
j 9 x^2 =6x+1 k 25 x^2 +1=20x l 2 x^2 +6x+1=0

2 Use the quadratic formula to solve forx, giving answers correct to 2 decimal places:
a x^2 ¡ 6 x+4=0 b 2 x^2 +4x¡1=0 c 5 x^2 +2x¡4=0

d 3 x^2 +2x¡2=0 e x+

1

x

=3 f x¡

3

x

=1

3 Use the quadratic formula to solve forx:

a (x+ 2)(x¡1) = 5 b (x+1)^2 =3¡x^2 c

x+1
x

=

x
2

d x+

1

x+2
=4 e 3 x¡

4

x+1
=10 f

x+2
x¡ 1

=

3 x
x+1

428 Quadratic equations and functions (Chapter 21)

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\428IGCSE01_21.CDR Monday, 27 October 2008 2:09:10 PM PETER

Free download pdf