USE OF THE QUADRATIC FORMULA
If b^2 ¡ 4 ac is a rational perfect square then
p
b^2 ¡ 4 ac will be rational, and so the solutions of the
quadratic will also be rational. In such instances, it is preferable to solve the quadratic by factorisation.
For example, 6 x^2 ¡ 13 x¡8=0has b^2 ¡ 4 ac= 169¡4(6)(¡8) = 361 = 19^2 , so we should solve this
equation by factorising 6 x^2 ¡ 13 x¡ 8 into (3x¡8) (2x+1).
Example 7 Self Tutor
Solve forx:
a x^2 ¡ 2 x¡2=0 b 2 x^2 +3x¡4=0
a x^2 ¡ 2 x¡2=0 has
a=1, b=¡ 2 , c=¡ 2
) x=
¡(¡2)§
p
(¡2)^2 ¡4(1)(¡2)
2(1)
) x=
2 §
p
4+8
2
) x=
2 §
p
12
2
) x=
2 § 2
p
3
2
) x=1§
p
3 fexact formg
b 2 x^2 +3x¡4=0 has
a=2, b=3, c=¡ 4
) x=
¡ 3 §
p
32 ¡4(2)(¡4)
2(2)
) x=
¡ 3 §
p
9+32
4
) x=
¡ 3 §
p
41
4
So, x¼ 0 : 85 or ¼¡ 2 : 35
fcorrect to 2 decimal placesg
EXERCISE 21C.1
1 Use the quadratic formula to solve forx, giving exact answers::
a x^2 +4x¡3=0 b x^2 +6x+1=0 c x^2 +4x¡7=0
d x^2 +2x=2 e x^2 +2=6x f x^2 =4x+1
g x^2 +1=3x h x^2 +8x+5=0 i 2 x^2 =2x+1
j 9 x^2 =6x+1 k 25 x^2 +1=20x l 2 x^2 +6x+1=0
2 Use the quadratic formula to solve forx, giving answers correct to 2 decimal places:
a x^2 ¡ 6 x+4=0 b 2 x^2 +4x¡1=0 c 5 x^2 +2x¡4=0
d 3 x^2 +2x¡2=0 e x+
1
x
=3 f x¡
3
x
=1
3 Use the quadratic formula to solve forx:
a (x+ 2)(x¡1) = 5 b (x+1)^2 =3¡x^2 c
x+1
x
=
x
2
d x+
1
x+2
=4 e 3 x¡
4
x+1
=10 f
x+2
x¡ 1
=
3 x
x+1
428 Quadratic equations and functions (Chapter 21)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\428IGCSE01_21.CDR Monday, 27 October 2008 2:09:10 PM PETER