QUADRATIC EQUATIONS WITH NO REAL SOLUTIONS
Consider x^2 +2x+5=0.
Using the quadratic formula, the solutions are: x=
¡ 2 §
p
4 ¡4(1)(5)
2(1)
=
¡ 2 §
p
¡ 16
2
However, in the real number system,
p
¡ 16 does not exist. We
therefore say that x^2 +2x+5=0 has no real solutions.
If we graph y=x^2 +2x+5 we get:
The graph does not cut thex-axis, and this further justifies the
fact that x^2 +2x+5=0 has no real solutions.
We will discuss this more when we turn our attention to quadratic
functions.
EXERCISE 21C.2
1 Show that the following quadratic equations have no real solutions:
a x^2 ¡ 3 x+12=0 b x^2 +2x+4=0 c ¡ 2 x^2 +x¡1=0
2 Solve forx, where possible:
a x^2 ¡25 = 0 b x^2 +25=0 c x^2 ¡7=0
d x^2 +7=0 e 4 x^2 ¡9=0 f 4 x^2 +9=0
g x^2 ¡ 4 x+5=0 h x^2 ¡ 4 x¡5=0 i x^2 ¡ 10 x+29=0
j x^2 +6x+25=0 k 2 x^2 ¡ 6 x¡5=0 l 2 x^2 +x¡2=0
Aquadratic functionis a relationship between two variables which can be written in the form
y=ax^2 +bx+c wherexandyare the variables anda,b, andcare constants, a 6 =0.
Using function notation, y=ax^2 +bx+c can be written as f(x)=ax^2 +bx+c.
FINDINGyGIVENx
For any value ofx, the corresponding value ofycan be found by substitution into the function equation.
D QUADRATIC FUNCTIONS [3.2]
y
x
(-1' 4)
-6 -4 -2 2 4
15
10
5
O
Quadratic equations and functions (Chapter 21) 429
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\429IGCSE01_21.CDR Tuesday, 18 November 2008 12:02:56 PM PETER