a Thex-intercepts are¡ 1 , 2 , and 4
) f(x)=a(x+ 1)(x¡2)(x¡4)
But when x=0, y=¡ 8
) a(1)(¡2)(¡4) =¡ 8
) 8 a=¡ 8
) a=¡ 1
So, f(x)=¡(x+ 1)(x¡2)(x¡4)
b The graph touches thex-axis at^23 ,
indicating a squared factor (3x¡2)^2.
Its otherx-intercept is¡ 3 ,so
f(x)=a(3x¡2)^2 (x+3)
But when x=0, y=6
) a(¡2)^2 (3) = 6
) 12 a=6
) a=^12
So, f(x)=^12 (3x¡2)^2 (x+3)
Example 3 Self Tutor
Find the equation of the cubic
with graph:
We only know two of thex-intercepts,¡ 3 and 4 ,so(x+3)and (x¡4) are linear factors.
We suppose the third linear factor is (ax+b),sof(x)=(x+ 3)(x¡4)(ax+b)
But f(0) = 6
) (3)(¡4)(b)=6
) ¡ 12 b=6
) b=¡^12 ...... (1)
and f(2) = 25
) (5)(¡2)(2a+b)=25
) 2 a¡^12 =¡^52 fusing (1)g
) 2 a=¡ 2
) a=¡ 1
Thus f(x)=(x+ 3)(x¡4)(¡x¡^12 ) or f(x)=¡(x+ 3)(x¡4)(x+^12 )
EXERCISE 23A.2
1 Find the form of the cubic function with graph:
abc
O
y
-3 (^4) x
6
()2 ¡25,
y
-1 x
12
O 23
y
x
-4
-12
3
O
O
-3 -2 x
-12
-\Qw_
y
472 Further functions (Chapter 23)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\472IGCSE01_23.CDR Monday, 27 October 2008 2:18:34 PM PETER