EXERCISE 24E.2
1 If a=
μ
2
¡ 3
¶
, b=
μ
3
¡ 1
¶
, c=
μ
¡ 2
¡ 3
¶
find:
a a+b b b+a c b+c d c+b
e a+c f c+a g a+a h b+a+c
2 Given p=
μ
¡ 1
3
¶
, q=
μ
¡ 2
¡ 3
¶
and r=
μ
3
¡ 4
¶
find exactly:
a p¡q b q¡r c p+q¡r d jpj e jq¡rj f jr+qj
3aGiven
¡!
AB=
μ
1
4
¶
and
¡!
AC=
μ
¡ 2
1
¶
, find
¡!
BC.
b Given
¡!
AB=
μ
¡ 3
2
¶
,
¡!
BD=
μ
0
4
¶
and
¡!
CD=
μ
1
¡ 3
¶
, find
¡!
AC:
4 Find the exact magnitude of these vectors:
a
μ
1
4
¶
b
μ
6
0
¶
c
μ
3
¡ 2
¶
d
μ
¡ 1
¡ 5
¶
e
μ
¡ 4
2
¶
f
μ
¡ 12 a
5 a
¶
5 For the following pairs of points, find: i
¡!
AB ii
a A(3,5) and B(1,2) b A(¡ 2 ,1) and B(3,¡ 1 )
c A(3,4) and B(0,0) d A(11,¡5) and B(¡ 1 ,0)
6 Alongside is a hole at Hackers Golf Club.
a Jack tees off from T and his ball finishes at A. Write a vector
to describe the displacement of the ball from T to A.
b He plays his second stroke from A to B. Write a vector to
describe the displacement with this shot.
c By great luck, Jack’s next shot finishes in the hole H. Write
a vector which describes this shot.
d Use vector lengths to find the distance, correct to 3
significant figures, from:
i TtoH ii TtoA
iii AtoB iv BtoH
e Find the sum of all three vectors for the ball travelling from
T to A to B to H. What information does the sum give about
the golf hole?
7 The diagram alongside shows an orienteering course run
by Kahu.
a Write a column vector to describe each leg of the
course.
b Find the sum of all of the vectors.
c What does the sum inbtell us?
A
B
tee, T
green
H
40 m
A
B
C
D
E
F
G
S
swamp
pine
forest
lake
beach
sea
start
the exact distance AB, i.e.,
̄
̄ ̄¡!
AB
̄
̄ ̄
Vectors (Chapter 24) 495
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\495IGCSE01_24.CDR Monday, 27 October 2008 2:27:04 PM PETER