Cambridge International Mathematics

(Tina Sui) #1

EXERCISE 24E.2


1 If a=

μ
2
¡ 3


, b=

μ
3
¡ 1


, c=

μ
¡ 2
¡ 3


find:

a a+b b b+a c b+c d c+b
e a+c f c+a g a+a h b+a+c

2 Given p=

μ
¡ 1
3


, q=

μ
¡ 2
¡ 3


and r=

μ
3
¡ 4


find exactly:

a p¡q b q¡r c p+q¡r d jpj e jq¡rj f jr+qj

3aGiven

¡!

AB=

μ
1
4


and

¡!

AC=

μ
¡ 2
1


, find

¡!

BC.

b Given

¡!

AB=

μ
¡ 3
2


,

¡!

BD=

μ
0
4


and

¡!

CD=

μ
1
¡ 3


, find

¡!

AC:

4 Find the exact magnitude of these vectors:

a

μ
1
4


b

μ
6
0


c

μ
3
¡ 2


d

μ
¡ 1
¡ 5


e

μ
¡ 4
2


f

μ
¡ 12 a
5 a


5 For the following pairs of points, find: i

¡!

AB ii
a A(3,5) and B(1,2) b A(¡ 2 ,1) and B(3,¡ 1 )
c A(3,4) and B(0,0) d A(11,¡5) and B(¡ 1 ,0)
6 Alongside is a hole at Hackers Golf Club.
a Jack tees off from T and his ball finishes at A. Write a vector
to describe the displacement of the ball from T to A.
b He plays his second stroke from A to B. Write a vector to
describe the displacement with this shot.
c By great luck, Jack’s next shot finishes in the hole H. Write
a vector which describes this shot.
d Use vector lengths to find the distance, correct to 3
significant figures, from:
i TtoH ii TtoA
iii AtoB iv BtoH
e Find the sum of all three vectors for the ball travelling from
T to A to B to H. What information does the sum give about
the golf hole?

7 The diagram alongside shows an orienteering course run
by Kahu.
a Write a column vector to describe each leg of the
course.
b Find the sum of all of the vectors.
c What does the sum inbtell us?

A

B

tee, T

green
H

40 m

A

B

C

D

E

F

G

S

swamp

pine
forest

lake

beach
sea

start

the exact distance AB, i.e.,

̄
̄ ̄¡!
AB

̄
̄ ̄

Vectors (Chapter 24) 495

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\495IGCSE01_24.CDR Monday, 27 October 2008 2:27:04 PM PETER

Free download pdf