Cambridge International Mathematics

(Tina Sui) #1

IMPORTANT TRIGONOMETRIC RATIOS IN THE UNIT CIRCLE


InChapter 15we found the trigonometric ratios for the angles 0 o, 30 o, 45 o, 60 oand 90 o.

μ cosμ sinμ tanμ
0 o 1 0 0
30 o

p
3
2

1
2
p^1
3
45 o p^12 p^121

60 o^12

p
3
2

p
3
90 o 0 1 undefined

These angles correspond
to the points shown on
the first quadrant of the
unit circle:

We can use the symmetry of the unit circle to find
the coordinates of all points with angles that are
multiples of 30 oand 45 o.

For example, the point Q corresponding to an angle
of 120 ois a reflection in they-axis of point P with
angle 60 o.
³
¡^12 ,

p 3
2

́
.

Multiples of 30 o Multiples of 45 o

We can find the trigonometric ratios of these angles using the coordinates of the corresponding point on the
unit circle.

Example 3 Self Tutor


Use a unit circle diagram to findsinμ,cosμandtanμfor:
a μ=60o b μ= 150o c μ= 225o

x

y
(0, 1)

(1, 0)

(0, 1)-

(,0)-1

³
1
2 ;

p 3
2

́

³p
3
2 ;
1
2

́

³p
3
2 ;¡
1
2

́

³
1
2 ;¡

p 3
2

³ ́
¡^12 ;¡

p
3
2

́

³
¡

p
3
2 ;¡
1
2

́

³
¡

p
3
2 ;
1
2

́

³
¡^12 ;

p 3
2

́

120°120°

210°210° OO

Q has the negative -coordinate and the same -coordinate as P, so the coordinates of Q arexy

x

y
(0, 1)

(1, 0)

(0, 1)-

(1,0)-

³

p^1
2 ;
p^1
2

́

³

p^1
2 ;¡
p^1
2

³ ́

¡p^12 ;¡p^12

́

³

¡p^12 ;p^12

́

45°

135°135°
225°

315°315°

OO

O

30°30°

45°45°

60°60°

y

x

³
1
2 ;

p
3
2

́

³
p^1
2 ;
p^1
2

́

³p
3
2 ;

1
2

́

()1 ¡0,

()0 ¡1,

-1 1

1

O

Q,()xy¡ P

y

x

60° 60°

120°

³

(^12) ;p 23
́
582 Further trigonometry (Chapter 29)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\582IGCSE01_29.CDR Monday, 27 October 2008 2:52:35 PM PETER

Free download pdf