a
sin 60o=
p
3
2
cos 60o=^12
tan 60o=
p
3
2
1
2
=
p
3
b
sin 150o=^12
cos 150o=¡
p
3
2
tan 150o=
1
2
¡
p
3
2
=¡p^13
c
sin 225o=¡p^12
cos 225o=¡p^12
tan 225o=1
EXERCISE 29A.2
1 Use a unit circle to findsinμ,cosμandtanμfor:
a μ=30o b μ= 180o c μ= 135o d μ= 210o
e μ= 300o f μ= 270o g μ= 315o h μ= 240o
sin^2 μ= (sinμ)^2 ,
cos^2 μ= (cosμ)^2
and so on.
2 Without using a calculator, find the exact values of:
a sin^2135 o b cos^2120 o c tan^2210 o d cos^3330 o
Check your answers using a calculator.
3 Use a unit circle diagram to find all angles between 0 oand 360 owhich have:
a a sine of^12 b a cosine of
p
3
2 c a sine of
p^1
2
d a sine of¡^12 e a sine of¡ 1 f a cosine of¡
p
3
2.
Consider the acute angled triangle alongside, in which the sides
opposite anglesA,BandCare labelleda,bandcrespectively.
Area of triangle ABC=^12 £AB£CN=^12 ch
But sinA=
h
b
) h=bsinA
) area=^12 c(bsinA) or^12 bcsinA
If the altitudes from A and B were drawn, we could also show that
area=^12 acsinB=^12 absinC. area=^12 absinC is worth remembering.
B AREA OF A TRIANGLE USING SINE [8.6]
AB
C
A
b h a
N c
C
B
y
x
³
1
2 ,
p
3
2
́
O
60°
y
x
150°150°
³
¡
p 3
2 ,
1
2
́
O
y
x
225°225°
³
¡p^12 ,¡p^12
́ O
Further trigonometry (Chapter 29) 583
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\583IGCSE01_29.CDR Monday, 27 October 2008 2:52:38 PM PETER