asin 60o=p
3
2cos 60o=^12tan 60o=p
3
2
1
2=
p
3bsin 150o=^12cos 150o=¡p
3
2tan 150o=1
2
¡p
3
2=¡p^13csin 225o=¡p^12cos 225o=¡p^12tan 225o=1EXERCISE 29A.2
1 Use a unit circle to findsinμ,cosμandtanμfor:
a μ=30o b μ= 180o c μ= 135o d μ= 210o
e μ= 300o f μ= 270o g μ= 315o h μ= 240osin^2 μ= (sinμ)^2 ,
cos^2 μ= (cosμ)^2
and so on.
2 Without using a calculator, find the exact values of:
a sin^2135 o b cos^2120 o c tan^2210 o d cos^3330 o
Check your answers using a calculator.3 Use a unit circle diagram to find all angles between 0 oand 360 owhich have:a a sine of^12 b a cosine ofp
3
2 c a sine of
p^1
2
d a sine of¡^12 e a sine of¡ 1 f a cosine of¡p
3
2.Consider the acute angled triangle alongside, in which the sides
opposite anglesA,BandCare labelleda,bandcrespectively.Area of triangle ABC=^12 £AB£CN=^12 chBut sinA=h
b
) h=bsinA
) area=^12 c(bsinA) or^12 bcsinAIf the altitudes from A and B were drawn, we could also show thatarea=^12 acsinB=^12 absinC. area=^12 absinC is worth remembering.B AREA OF A TRIANGLE USING SINE [8.6]
ABCAb h aN cCByx³
1
2 ,p
3
2́O60°yx150°150°³
¡p 3
2 ,1
2́Oyx
225°225°
³
¡p^12 ,¡p^12́ OFurther trigonometry (Chapter 29) 583IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\583IGCSE01_29.CDR Monday, 27 October 2008 2:52:38 PM PETER