IMPORTANT TRIGONOMETRIC RATIOS IN THE UNIT CIRCLE
InChapter 15we found the trigonometric ratios for the angles 0 o, 30 o, 45 o, 60 oand 90 o.
μ cosμ sinμ tanμ
0 o 1 0 0
30 o
p
3
2
1
2
p^1
3
45 o p^12 p^121
60 o^12
p
3
2
p
3
90 o 0 1 undefined
These angles correspond
to the points shown on
the first quadrant of the
unit circle:
We can use the symmetry of the unit circle to find
the coordinates of all points with angles that are
multiples of 30 oand 45 o.
For example, the point Q corresponding to an angle
of 120 ois a reflection in they-axis of point P with
angle 60 o.
³
¡^12 ,
p 3
2
́
.
Multiples of 30 o Multiples of 45 o
We can find the trigonometric ratios of these angles using the coordinates of the corresponding point on the
unit circle.
Example 3 Self Tutor
Use a unit circle diagram to findsinμ,cosμandtanμfor:
a μ=60o b μ= 150o c μ= 225o
x
y
(0, 1)
(1, 0)
(0, 1)-
(,0)-1
³
1
2 ;
p 3
2
́
³p
3
2 ;
1
2
́
³p
3
2 ;¡
1
2
́
³
1
2 ;¡
p 3
2
³ ́
¡^12 ;¡
p
3
2
́
³
¡
p
3
2 ;¡
1
2
́
³
¡
p
3
2 ;
1
2
́
³
¡^12 ;
p 3
2
́
120°120°
210°210° OO
Q has the negative -coordinate and the same -coordinate as P, so the coordinates of Q arexy
x
y
(0, 1)
(1, 0)
(0, 1)-
(1,0)-
³
p^1
2 ;
p^1
2
́
³
p^1
2 ;¡
p^1
2
³ ́
¡p^12 ;¡p^12
́
³
¡p^12 ;p^12
́
45°
135°135°
225°
315°315°
OO
O
30°30°
45°45°
60°60°
y
x
³
1
2 ;
p
3
2
́
³
p^1
2 ;
p^1
2
́
³p
3
2 ;
1
2
́
()1 ¡0,
()0 ¡1,
-1 1
1
O
Q,()xy¡ P
y
x
60° 60°
120°
³
(^12) ;p 23
́
582 Further trigonometry (Chapter 29)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\582IGCSE01_29.CDR Monday, 27 October 2008 2:52:35 PM PETER