For the obtuse angled triangle ABC alongside:
Area of triangle ABC=^12 £AB£CN=^12 ch
But sin(180o¡A)=
h
b
) h=bsin(180o¡A)=bsinA
) area of triangle ABC=^12 cbsinA,
which is the same result as whenAwas acute.
Summary:
The area of a triangle is a half of the product of
two sides and the sine of the included angle.
Example 4 Self Tutor
Find the area of triangle ABC.
Area=^12 acsinB
=^12 £ 15 £ 11 £sin 28o
¼ 38 : 7 cm^2
EXERCISE 29B
1 Find the area of:
abc
de f
A
A
()180 ¡-¡° A
NB
C
h
b
a
c
side included angle
side
A
B C
11 cm
15 cm
28°
12 cm
13 cm
45°
28 km
82°
25 km
7.8 cm
112°
6.4 cm
1.65 m
78°
1.43 m
12.2 cm
10.6 cm 125°
32 m 84° 27 m
584 Further trigonometry (Chapter 29)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\584IGCSE01_29.CDR Monday, 27 October 2008 2:52:41 PM PETER