Consider two positive numbersxandy. We can write them both with basea: x=ap and y=aq, for
somepandq.
) p= logax and q= logay ...... (*)Using exponent laws, we notice that: xy=apaq=ap+q
x
y=
ap
aq=ap¡qxn=(ap)n=anp) loga(xy)=p+q= logax+ logay ffrom *glogaμ
x
y¶
=p¡q= logax¡logayloga(xn)=np=nlogaxloga(xy) = logax+ logaylogaμ
x
y¶
= logax¡logayloga(xn)=nlogaxExample 5 Self Tutor
If log 3 5=p and log 3 8=q, write in terms ofpandq:
a log 340 b log 325 c log 3¡ 64
125¢a log 340
= log 3 (5£8)
= log 3 5 + log 38
=p+qb log 325
= log 352
= 2 log 35
=2pc log 3¡ 64
125¢= log 3μ
82
53¶= log 382 ¡log 353
= 2 log 38 ¡3 log 35
=2q¡ 3 pC RULES FOR LOGARITHMS [3.10]
Logarithms (Chapter 31) 629Example 4 Self Tutor
Simplify: a log 27 ¡^12 log 2 3 + log 25 b 3 ¡log 25a log 27 ¡^12 log 2 3 + log 25
= log 2 7 + log 25 ¡log 23(^12)
= log 2 (7£5)¡log 2
p
3
= log 2
³
p^35
3
́
b 3 ¡log 25
= log 223 ¡log 25
= log 2
¡ 8
5
¢
= log 2 (1:6)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\629IGCSE01_31.CDR Tuesday, 18 November 2008 11:13:47 AM PETER