Consider two positive numbersxandy. We can write them both with basea: x=ap and y=aq, for
somepandq.
) p= logax and q= logay ...... (*)
Using exponent laws, we notice that: xy=apaq=ap+q
x
y
=
ap
aq
=ap¡q
xn=(ap)n=anp
) loga(xy)=p+q= logax+ logay ffrom *g
loga
μ
x
y
¶
=p¡q= logax¡logay
loga(xn)=np=nlogax
loga(xy) = logax+ logay
loga
μ
x
y
¶
= logax¡logay
loga(xn)=nlogax
Example 5 Self Tutor
If log 3 5=p and log 3 8=q, write in terms ofpandq:
a log 340 b log 325 c log 3
¡ 64
125
¢
a log 340
= log 3 (5£8)
= log 3 5 + log 38
=p+q
b log 325
= log 352
= 2 log 35
=2p
c log 3
¡ 64
125
¢
= log 3
μ
82
53
¶
= log 382 ¡log 353
= 2 log 38 ¡3 log 35
=2q¡ 3 p
C RULES FOR LOGARITHMS [3.10]
Logarithms (Chapter 31) 629
Example 4 Self Tutor
Simplify: a log 27 ¡^12 log 2 3 + log 25 b 3 ¡log 25
a log 27 ¡^12 log 2 3 + log 25
= log 2 7 + log 25 ¡log 23
(^12)
= log 2 (7£5)¡log 2
p
3
= log 2
³
p^35
3
́
b 3 ¡log 25
= log 223 ¡log 25
= log 2
¡ 8
5
¢
= log 2 (1:6)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\629IGCSE01_31.CDR Tuesday, 18 November 2008 11:13:47 AM PETER