2 Copy and complete: Number Number as a power of 10 logof number
p
10
p (^310)
p
1000
p^1
10
3 Can you draw any conclusion from your table? For example, you may wish to comment on when
a logarithm is positive or negative.
Example 6 Self Tutor If the base for a
logarithm is not
given then we
assume it is 10.
a 2 b 20
ab
RULES FOR BASE 10 LOGARITHMS
These rules
correspond
closely to the
exponent laws.
log(xy) = logx+ logy
log
μ
x
y
¶
= logx¡logy
log(xn)=nlogx
Example 7 Self Tutor
Write as a single logarithm:
a log 2 + log 7 b log 6¡log 3 c 2 + log 9 d
log 49
log
¡ 1
7
¢
a log 2 + log 7
= log(2£7)
= log 14
b log 6¡log 3
= log
¡ 6
3
¢
= log 2
c 2 + log 9
= log 10^2 + log 9
= log(100£9)
= log 900
d
log 49
log
¡ 1
7
¢
=
log 7^2
log 7¡^1
=
2 log 7
¡1 log 7
=¡ 2
The rules for base 10 logarithms are clearly the same rules for general logarithms:
Logarithms (Chapter 31) 631
Use the property a=10loga to write the following numbers
as powers of 10 :
log 2¼ 0 : 301
) 2 ¼ 100 :^301
log 20¼ 1 : 301
) 20 ¼ 101 :^301
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\631IGCSE01_31.CDR Thursday, 30 October 2008 12:05:29 PM PETER