Algebra (Expansion and factorisation) (Chapter 1) 43Example 17 Self Tutor
Fully factorise: a 3 a+6 b ab¡ 2 bc3 a+6
= 3 £a+ 3 £ 2
=3(a+2) fHCF is 3 gb ab¡ 2 bc
=a£b¡ 2 £b£c
=b(a¡ 2 c) fHCF isbgExample 18 Self Tutor
Fully factorise: a 8 x^2 +12x b 3 y^2 ¡ 6 xya 8 x^2 +12x
=2£ 4 £x£x+3£ 4 £x
=4x(2x+3) fHCF is 4 xgb 3 y^2 ¡ 6 xy
= 3 £y£y¡ 2 £ 3 £x£y
=3y(y¡ 2 x) fHCF is 3 ygExample 19 Self Tutor
Fully factorise: a ¡ 2 a+6ab b ¡ 2 x^2 ¡ 4 xa ¡ 2 a+6ab
=6ab¡ 2 a fWrite with 6 abfirst.g
= 2 £ 3 £a£b¡ 2 £a
=2a(3b¡1) fHCF is 2 agb ¡ 2 x^2 ¡ 4 x
=¡ 2 £x£x+¡ 2 £ 2 £x
=¡ 2 x(x+2) fHCF is ¡ 2 xgExample 20 Self Tutor
Fully factorise:
a 2(x+3)+x(x+3) b x(x+4)¡(x+4)a 2 (x+3)+x(x+3) fHCF is(x+3)g
=(x+ 3)(2 +x)b x(x+4)¡(x+4) fHCF is(x+4)g
=x(x+4)¡1(x+4)
=(x+4)(x¡1)Example 21 Self Tutor
Fully factorise (x¡1)(x+2)+3(x¡1)(x¡1)(x+2)+3(x¡1) fHCF of(x¡1)g
=(x¡1)[(x+2)+3]
=(x¡1)(x+5)With practice the
middle line is
not necessary.Notice the use of
square brackets in the
second line. This helps
to distinguish between
the sets of brackets.IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\043IGCSE01_01.CDR Thursday, 11 September 2008 9:10:54 AM PETER