Algebra (Expansion and factorisation) (Chapter 1) 43
Example 17 Self Tutor
Fully factorise: a 3 a+6 b ab¡ 2 bc
3 a+6
= 3 £a+ 3 £ 2
=3(a+2) fHCF is 3 g
b ab¡ 2 bc
=a£b¡ 2 £b£c
=b(a¡ 2 c) fHCF isbg
Example 18 Self Tutor
Fully factorise: a 8 x^2 +12x b 3 y^2 ¡ 6 xy
a 8 x^2 +12x
=2£ 4 £x£x+3£ 4 £x
=4x(2x+3) fHCF is 4 xg
b 3 y^2 ¡ 6 xy
= 3 £y£y¡ 2 £ 3 £x£y
=3y(y¡ 2 x) fHCF is 3 yg
Example 19 Self Tutor
Fully factorise: a ¡ 2 a+6ab b ¡ 2 x^2 ¡ 4 x
a ¡ 2 a+6ab
=6ab¡ 2 a fWrite with 6 abfirst.g
= 2 £ 3 £a£b¡ 2 £a
=2a(3b¡1) fHCF is 2 ag
b ¡ 2 x^2 ¡ 4 x
=¡ 2 £x£x+¡ 2 £ 2 £x
=¡ 2 x(x+2) fHCF is ¡ 2 xg
Example 20 Self Tutor
Fully factorise:
a 2(x+3)+x(x+3) b x(x+4)¡(x+4)
a 2 (x+3)+x(x+3) fHCF is(x+3)g
=(x+ 3)(2 +x)
b x(x+4)¡(x+4) fHCF is(x+4)g
=x(x+4)¡1(x+4)
=(x+4)(x¡1)
Example 21 Self Tutor
Fully factorise (x¡1)(x+2)+3(x¡1)
(x¡1)(x+2)+3(x¡1) fHCF of(x¡1)g
=(x¡1)[(x+2)+3]
=(x¡1)(x+5)
With practice the
middle line is
not necessary.
Notice the use of
square brackets in the
second line. This helps
to distinguish between
the sets of brackets.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\043IGCSE01_01.CDR Thursday, 11 September 2008 9:10:54 AM PETER