Cambridge International Mathematics

(Tina Sui) #1
Algebra (Expansion and factorisation) (Chapter 1) 43

Example 17 Self Tutor


Fully factorise: a 3 a+6 b ab¡ 2 bc

3 a+6
= 3 £a+ 3 £ 2
=3(a+2) fHCF is 3 g

b ab¡ 2 bc
=a£b¡ 2 £b£c
=b(a¡ 2 c) fHCF isbg

Example 18 Self Tutor


Fully factorise: a 8 x^2 +12x b 3 y^2 ¡ 6 xy

a 8 x^2 +12x
=2£ 4 £x£x+3£ 4 £x
=4x(2x+3) fHCF is 4 xg

b 3 y^2 ¡ 6 xy
= 3 £y£y¡ 2 £ 3 £x£y
=3y(y¡ 2 x) fHCF is 3 yg

Example 19 Self Tutor


Fully factorise: a ¡ 2 a+6ab b ¡ 2 x^2 ¡ 4 x

a ¡ 2 a+6ab
=6ab¡ 2 a fWrite with 6 abfirst.g
= 2 £ 3 £a£b¡ 2 £a
=2a(3b¡1) fHCF is 2 ag

b ¡ 2 x^2 ¡ 4 x
=¡ 2 £x£x+¡ 2 £ 2 £x
=¡ 2 x(x+2) fHCF is ¡ 2 xg

Example 20 Self Tutor


Fully factorise:
a 2(x+3)+x(x+3) b x(x+4)¡(x+4)

a 2 (x+3)+x(x+3) fHCF is(x+3)g
=(x+ 3)(2 +x)

b x(x+4)¡(x+4) fHCF is(x+4)g
=x(x+4)¡1(x+4)
=(x+4)(x¡1)

Example 21 Self Tutor


Fully factorise (x¡1)(x+2)+3(x¡1)

(x¡1)(x+2)+3(x¡1) fHCF of(x¡1)g
=(x¡1)[(x+2)+3]
=(x¡1)(x+5)

With practice the
middle line is
not necessary.

Notice the use of
square brackets in the
second line. This helps
to distinguish between
the sets of brackets.

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\043IGCSE01_01.CDR Thursday, 11 September 2008 9:10:54 AM PETER

Free download pdf