Algebra (Expansion and factorisation) (Chapter 1) 45
We know theexpansionof (a+b)(a¡b) is a^2 ¡b^2.
Thus, thefactorisationof a^2 ¡b^2 is (a+b)(a¡b):
a^2 ¡b^2 =(a+b)(a¡b)
In contrast, thesumof two squares does not factorise into two
real linear factors.
Example 22 Self Tutor
Use the rule a^2 ¡b^2 =(a+b)(a¡b) to factorise fully:
a 9 ¡x^2 b 4 x^2 ¡ 25
a 9 ¡x^2
=3^2 ¡x^2 fdifference of squaresg
=(3+x)(3¡x)
b 4 x^2 ¡ 25
=(2x)^2 ¡ 52 fdifference of squaresg
=(2x+ 5)(2x¡5)
Example 23 Self Tutor
Fully factorise: a 2 x^2 ¡ 8 b ¡ 3 x^2 +48
a 2 x^2 ¡ 8
=2(x^2 ¡4)
=2(x^2 ¡ 22 )
=2(x+ 2)(x¡2)
fHCF is 2 g
fdifference of squaresg
b ¡ 3 x^2 +48
=¡3(x^2 ¡16)
=¡3(x^2 ¡ 42 )
=¡3(x+ 4)(x¡4)
fHCF is¡ 3 g
fdifference of squaresg
We notice that x^2 ¡ 9 is the difference of two squares and therefore we can factorise it using
a^2 ¡b^2 =(a+b)(a¡b).
Even though 7 is not a perfect square, we can still factorise x^2 ¡ 7 by writing 7=(
p
7)^2 :
So, x^2 ¡7=x^2 ¡(
p
7)^2 =(x+
p
7)(x¡
p
7):
We say that x+
p
7 and x¡
p
7 are thelinear factorsof x^2 ¡ 7.
[2.8]
H DIFFERENCE OF TWO SQUARES
FACTORISATION
The between
and is
which is the difference
of two squares.
difference
abab^2222 ¡¡¡
Always look to
remove a common
factor first.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\045IGCSE01_01.CDR Wednesday, 10 September 2008 2:07:46 PM PETER